Answered

Order [tex]\sqrt[3]{58}, \frac{32}{7}, \sqrt{28}[/tex] from greatest to least.

A. [tex]\frac{32}{7}, \sqrt[3]{58}, \sqrt{28}[/tex]

B. [tex]\sqrt{28}, \frac{32}{7}, \sqrt[3]{58}[/tex]

C. [tex]\frac{32}{7}, \sqrt{28}, \sqrt[3]{58}[/tex]

D. [tex]\sqrt[3]{58}, \sqrt{28}, \frac{32}{7}[/tex]



Answer :

To determine the order of the expressions [tex]\(\sqrt[3]{58}\)[/tex], [tex]\(\frac{32}{7}\)[/tex], and [tex]\(\sqrt{28}\)[/tex] from greatest to least, let’s first evaluate them numerically.

1. Evaluating [tex]\(\sqrt[3]{58}\)[/tex]:
[tex]\[ \sqrt[3]{58} \approx 3.8709 \][/tex]

2. Evaluating [tex]\(\frac{32}{7}\)[/tex]:
[tex]\[ \frac{32}{7} \approx 4.5714 \][/tex]

3. Evaluating [tex]\(\sqrt{28}\)[/tex]:
[tex]\[ \sqrt{28} \approx 5.2915 \][/tex]

With these numerical values, we can compare and order them from greatest to least:

- [tex]\(\sqrt{28} \approx 5.2915\)[/tex]
- [tex]\(\frac{32}{7} \approx 4.5714\)[/tex]
- [tex]\(\sqrt[3]{58} \approx 3.8709\)[/tex]

Thus, the correct order from greatest to least is:
[tex]\[ \sqrt{28}, \frac{32}{7}, \sqrt[3]{58} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{\sqrt{28}, \frac{32}{7}, \sqrt[3]{58}} \][/tex]