Answer :

Of course! Let’s find the expression for [tex]\(\frac{f(x+\Delta x) - f(x)}{\Delta x}\)[/tex] given that [tex]\( f(x) = x^3 \)[/tex].

### Step-by-Step Solution:
1. Function Definition:
We have [tex]\( f(x) = x^3 \)[/tex].

2. Increment the Input:
Increment the function's input by [tex]\(\Delta x\)[/tex], giving us [tex]\( f(x + \Delta x) \)[/tex].

3. Apply the Increment:
So, [tex]\( f(x + \Delta x) = (x + \Delta x)^3 \)[/tex].

4. Expand the Expression:
Next, we need to expand [tex]\( (x + \Delta x)^3 \)[/tex].

[tex]\[ (x + \Delta x)^3 = x^3 + 3x^2 (\Delta x) + 3x (\Delta x)^2 + (\Delta x)^3 \][/tex]

5. Substitute into the Difference Quotient:
We now substitute [tex]\( f(x + \Delta x) \)[/tex] and [tex]\( f(x) \)[/tex] into the difference quotient [tex]\(\frac{f(x+\Delta x) - f(x)}{\Delta x} \)[/tex].

[tex]\[ \frac{(x + \Delta x)^3 - x^3}{\Delta x} \][/tex]

6. Calculate the Numerator:
Substitute the expanded form:

[tex]\[ \frac{(x^3 + 3x^2 (\Delta x) + 3x (\Delta x)^2 + (\Delta x)^3) - x^3}{\Delta x} \][/tex]

Simplifying the numerator:

[tex]\[ \frac{x^3 + 3x^2 (\Delta x) + 3x (\Delta x)^2 + (\Delta x)^3 - x^3}{\Delta x} = \frac{3x^2 (\Delta x) + 3x (\Delta x)^2 + (\Delta x)^3}{\Delta x} \][/tex]

7. Factor and Simplify:
Factor out [tex]\(\Delta x\)[/tex] from the numerator:

[tex]\[ \frac{\Delta x (3x^2 + 3x (\Delta x) + (\Delta x)^3)}{\Delta x} \][/tex]

Since [tex]\(\Delta x \neq 0\)[/tex], we can cancel [tex]\(\Delta x\)[/tex] in the numerator and denominator:

[tex]\[ 3x^2 + 3x (\Delta x) + (\Delta x)^2 \][/tex]

8. Result:
Therefore, the expression [tex]\(\frac{f(x+\Delta x)-f(x)}{\Delta x}\)[/tex] simplifies to:

[tex]\[ \boxed{3x^2 + 3x (\Delta x) + (\Delta x)^2} \][/tex]

So, the expression after simplifying is [tex]\( \frac{f(x + \Delta x) - f(x)}{\Delta x} = 3x^2 + 3x (\Delta x) + (\Delta x)^2 \)[/tex].