How would one convert 125 lb to kilograms [tex]\((1 oz = 28 g)\)[/tex]?

A. [tex]\(125 \, \text{lb} \times \frac{16 \, \text{oz}}{1 \, \text{lb}} \times \frac{28 \, \text{g}}{1 \, \text{oz}}\)[/tex]

B. [tex]\(125 \, \text{lb} \times \frac{16 \, \text{oz}}{1 \, \text{lb}} \times \frac{28 \, \text{g}}{1 \, \text{oz}} \times \frac{1 \, \text{kg}}{1000 \, \text{g}}\)[/tex]

C. [tex]\(125 \, \text{lb} \times \frac{28 \, \text{g}}{1 \, \text{oz}}\)[/tex]

D. [tex]\(125 \, \text{lb} \times \frac{28 \, \text{g}}{1 \, \text{oz}} \times \frac{1 \, \text{kg}}{1000 \, \text{g}}\)[/tex]



Answer :

To convert 125 pounds (lb) to kilograms (kg), follow these step-by-step conversions:

1. Convert pounds to ounces:
[tex]\[ 1 \text{ lb} = 16 \text{ oz} \][/tex]
Therefore,
[tex]\[ 125 \text{ lb} \times 16 \text{ oz/lb} = 2000 \text{ oz} \][/tex]

2. Convert ounces to grams:
[tex]\[ 1 \text{ oz} = 28 \text{ g} \][/tex]
So,
[tex]\[ 2000 \text{ oz} \times 28 \text{ g/oz} = 56000 \text{ g} \][/tex]

3. Convert grams to kilograms:
[tex]\[ 1000 \text{ g} = 1 \text{ kg} \][/tex]
Therefore,
[tex]\[ 56000 \text{ g} \div 1000 \text{ g/kg} = 56.0 \text{ kg} \][/tex]

So, to summarize:
[tex]\[ 125 \text{ lb} \times 16 \text{ oz/lb} \times 28 \text{ g/oz} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 56.0 \text{ kg} \][/tex]

Given these calculations, the correct answer is:

D. [tex]\(125 \text{ lb} \times \frac{16 \text{ oz}}{1 \text{ lb}} \times \frac{28 \text{ g}}{1 \text{ oz}} \times \frac{1 \text{ kg}}{1000 \text{ g}}\)[/tex]