How would one convert 125 lb to kilograms [tex]\((1 \text{ oz} = 28 \text{ g})\)[/tex]?

A. [tex]\(125 \, \text{lb} \times \frac{16 \, \text{oz}}{1 \, \text{lb}} \times \frac{28 \, \text{g}}{1 \, \text{oz}}\)[/tex]

B. [tex]\(125 \, \text{lb} \times \frac{16 \, \text{oz}}{1 \, \text{lb}} \times \frac{28 \, \text{g}}{1 \, \text{oz}} \times \frac{1 \, \text{kg}}{1000 \, \text{g}}\)[/tex]

C. [tex]\(125 \, \text{lb} \times \frac{28 \, \text{g}}{1 \, \text{oz}}\)[/tex]

D. [tex]\(125 \, \text{lb} \times \frac{28 \, \text{g}}{1 \, \text{oz}} \times \frac{1 \, \text{kg}}{1000 \, \text{g}}\)[/tex]



Answer :

To convert 125 pounds (lb) to kilograms (kg), we need to go through a series of unit conversions: pounds to ounces (oz), ounces to grams (g), and finally grams to kilograms. Let's follow these steps:

1. Convert pounds to ounces:
- 1 pound (lb) is equal to 16 ounces (oz).
- Therefore, to convert 125 pounds to ounces, we multiply:
[tex]\[ 125 \, \text{lb} \times \frac{16 \, \text{oz}}{1 \, \text{lb}} \][/tex]

2. Convert ounces to grams:
- 1 ounce (oz) is equal to 28 grams (g).
- So, to convert the value obtained in ounces to grams, we multiply:
[tex]\[ (125 \, \text{lb} \times 16 \, \text{oz/lb}) \times \frac{28 \, \text{g}}{1 \, \text{oz}} \][/tex]

3. Convert grams to kilograms:
- 1 kilogram (kg) is equal to 1000 grams (g).
- To convert grams to kilograms, we divide by 1000:
[tex]\[ \left(125 \, \text{lb} \times 16 \, \text{oz/lb} \times 28 \, \text{g/oz}\right) \times \frac{1 \, \text{kg}}{1000 \, \text{g}} \][/tex]

Combining these steps, the entire conversion process can be written as:
[tex]\[ 125 \, \text{lb} \times \frac{16 \, \text{oz}}{1 \, \text{lb}} \times \frac{28 \, \text{g}}{1 \, \text{oz}} \times \frac{1 \, \text{kg}}{1000 \, \text{g}} \][/tex]

Therefore, the correct conversion formula is:
[tex]\[ 125 \, \text{lb} \times \frac{16 \, \text{oz}}{1 \, \text{lb}} \times \frac{28 \, \text{g}}{1 \, \text{oz}} \times \frac{1 \, \text{kg}}{1000 \, \text{g}} \][/tex]

Thus, the correct option corresponding to this formula is:
[tex]\[ \boxed{B} \][/tex]