Which expression is equivalent to [tex]\left(\frac{m^5 n}{p q^2}\right)^4[/tex]?

A. [tex]\frac{m^9 n^5}{p^5 q^6}[/tex]
B. [tex]\frac{m^{20} n^4}{p q^2}[/tex]
C. [tex]\frac{m^{20} n^4}{p^4 q^8}[/tex]
D. [tex]\frac{m^9 n^4}{p^4 q^6}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\left(\frac{m^5 n}{p q^2}\right)^4\)[/tex], we will simplify the given expression step-by-step.

Given expression: [tex]\(\left(\frac{m^5 n}{p q^2}\right)^4\)[/tex]

First, use the property of exponents that states [tex]\(\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}\)[/tex].

So, [tex]\(\left(\frac{m^5 n}{p q^2}\right)^4 = \frac{(m^5 n)^4}{(p q^2)^4}\)[/tex].

Next, raise each term inside the numerator and denominator to the power of 4:

Numerator:
[tex]\[ (m^5 n)^4 = (m^5)^4 \cdot (n)^4 = m^{5 \cdot 4} \cdot n^4 = m^{20} \cdot n^4 \][/tex]

Denominator:
[tex]\[ (p q^2)^4 = (p)^4 \cdot (q^2)^4 = p^4 \cdot (q^2)^4 = p^4 \cdot q^{2 \cdot 4} = p^4 \cdot q^8 \][/tex]

Putting it all together, we get:
[tex]\[ \frac{(m^5 n)^4}{(p q^2)^4} = \frac{m^{20} \cdot n^4}{p^4 \cdot q^8} \][/tex]

Thus, the expression equivalent to [tex]\(\left(\frac{m^5 n}{p q^2}\right)^4\)[/tex] is:
[tex]\[ \frac{m^{20} n^4}{p^4 q^8} \][/tex]

Therefore, the correct option is:
[tex]\[ \boxed{\frac{m^{20} n^4}{p^4 q^8}} \][/tex]