Answer :
To simplify the expression [tex]\(\left(11 - \frac{2}{5} \sqrt{25}\right)^2 + (1 - 4)^2\)[/tex], we will break it down step-by-step:
1. Evaluate the square root:
[tex]\[ \sqrt{25} = 5 \][/tex]
2. Multiply within the expression:
[tex]\[ \frac{2}{5} \cdot 5 = 2 \][/tex]
3. Simplify the expression inside the first parentheses:
[tex]\[ 11 - 2 = 9 \][/tex]
4. Square the result from the first parentheses:
[tex]\[ 9^2 = 81 \][/tex]
5. Simplify the expression inside the second parentheses:
[tex]\[ 1 - 4 = -3 \][/tex]
6. Square the result from the second parentheses:
[tex]\[ (-3)^2 = 9 \][/tex]
7. Add the squared results together:
[tex]\[ 81 + 9 = 90 \][/tex]
Thus, the simplified result of the expression [tex]\(\left(11 - \frac{2}{5} \sqrt{25}\right)^2 + (1 - 4)^2\)[/tex] is:
[tex]\[ \boxed{90} \][/tex]
1. Evaluate the square root:
[tex]\[ \sqrt{25} = 5 \][/tex]
2. Multiply within the expression:
[tex]\[ \frac{2}{5} \cdot 5 = 2 \][/tex]
3. Simplify the expression inside the first parentheses:
[tex]\[ 11 - 2 = 9 \][/tex]
4. Square the result from the first parentheses:
[tex]\[ 9^2 = 81 \][/tex]
5. Simplify the expression inside the second parentheses:
[tex]\[ 1 - 4 = -3 \][/tex]
6. Square the result from the second parentheses:
[tex]\[ (-3)^2 = 9 \][/tex]
7. Add the squared results together:
[tex]\[ 81 + 9 = 90 \][/tex]
Thus, the simplified result of the expression [tex]\(\left(11 - \frac{2}{5} \sqrt{25}\right)^2 + (1 - 4)^2\)[/tex] is:
[tex]\[ \boxed{90} \][/tex]