Which equation can be simplified to find the inverse of [tex]$y = 5x^2 + 10$[/tex]?

A. [tex]x = 5y^2 + 10[/tex]
B. [tex]\frac{1}{y} = 5x^2 + 10[/tex]
C. [tex]-y = 5x^2 + 10[/tex]
D. [tex]y = \frac{1}{5}x^2 + \frac{1}{10}[/tex]



Answer :

To find the inverse of the equation [tex]\( y = 5x^2 + 10 \)[/tex], we need to follow a step-by-step approach to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex] and then express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] again.

1. Start with the given equation:
[tex]\[ y = 5x^2 + 10 \][/tex]

2. Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the equation, which represents the inverse relationship:
[tex]\[ x = 5y^2 + 10 \][/tex]

3. Solve for [tex]\( y \)[/tex]:

a. Subtract 10 from both sides:
[tex]\[ x - 10 = 5y^2 \][/tex]

b. Divide both sides by 5:
[tex]\[ \frac{x - 10}{5} = y^2 \][/tex]

c. Take the square root of both sides:
[tex]\[ y = \pm \sqrt{\frac{x - 10}{5}} \][/tex]

Therefore, the simplified equation to find the inverse is:
[tex]\[ x = 5y^2 + 10 \implies y = \pm \sqrt{\frac{x - 10}{5}} \][/tex]

Among the provided choices, the equation that can be simplified to find the inverse is:
[tex]\[ x = 5y^2 + 10 \][/tex]