Which formula can be used to find velocity if kinetic energy and mass are known?

A. [tex]V=\sqrt{\frac{1}{2}(K E)(m)}[/tex]
B. [tex]v=\sqrt{\frac{2 m h}{K E}}[/tex]
C. [tex]v=\sqrt{K E(m)}[/tex]
D. [tex]v=\sqrt{\frac{2 K E}{m}}[/tex]



Answer :

To find the velocity given the kinetic energy (KE) and mass (m) of an object, we start with the formula for kinetic energy:

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

Here, [tex]\( KE \)[/tex] stands for kinetic energy, [tex]\( m \)[/tex] is mass, and [tex]\( v \)[/tex] is velocity. We need to solve for [tex]\( v \)[/tex]:

1. Begin by isolating [tex]\( v^2 \)[/tex]:

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

Multiply both sides by 2 to get:

[tex]\[ 2 KE = m v^2 \][/tex]

2. Next, solve for [tex]\( v^2 \)[/tex]:

[tex]\[ v^2 = \frac{2 KE}{m} \][/tex]

3. Finally, take the square root of both sides to solve for [tex]\( v \)[/tex]:

[tex]\[ v = \sqrt{\frac{2 KE}{m}} \][/tex]

Therefore, the correct formula to find the velocity given kinetic energy and mass is:

[tex]\[ v = \sqrt{\frac{2 KE}{m}} \][/tex]

From the given choices, this corresponds to:

[tex]\[ v = \sqrt{\frac{2 KE}{m}} \][/tex]

Hence, the correct answer is:

[tex]\[ \boxed{4} \][/tex]