Simplify the expression:

[tex]\[ \left(\frac{-4 r^2 s^3}{r}\right)^3 \][/tex]

A. [tex]\(-64 r^4 s^6\)[/tex]
B. [tex]\(-4 r^{12} s^9\)[/tex]
C. [tex]\(64 r^{12} s^9\)[/tex]
D. [tex]\(-64 r^{12} s^9\)[/tex]



Answer :

To simplify the given expression:
[tex]\[ \left(\frac{-4 r^2 s^3}{r}\right)^3 \][/tex]

Let's start by simplifying the fraction inside the parentheses:

1. [tex]\(\frac{-4 r^2 s^3}{r}\)[/tex]

Divide [tex]\(r^2\)[/tex] by [tex]\(r\)[/tex]:
[tex]\[ \frac{-4 r^2 s^3}{r} = -4 r^{2-1} s^3 = -4 r^1 s^3 = -4 r s^3 \][/tex]

Now, our expression is:
[tex]\[ (-4 r s^3)^3 \][/tex]

Next, we apply the exponent to each component inside the parentheses:

2. [tex]\((-4 r s^3)^3\)[/tex] can be expanded as:
[tex]\[ (-4)^3 \cdot (r)^3 \cdot (s^3)^3 \][/tex]

3. Calculate each component separately:

- [tex]\((-4)^3 = -64\)[/tex]
- [tex]\(r^3 = r^3\)[/tex]
- [tex]\((s^3)^3 = s^{3 \cdot 3} = s^9\)[/tex]

Combine these results together:

4. Multiplying the components:
[tex]\[ (-4)^3 \cdot r^3 \cdot s^9 = -64 r^3 s^9 \][/tex]

Therefore, the simplified expression is:
[tex]\[ -64 r^3 s^9 \][/tex]

So, the correct answer is not one of the previously listed options, but instead should be [tex]\(-64 r^3 s^9\)[/tex], matching the simplified expression we derived.