Simplify the following expressions:

1. [tex]\( 5 \cdot (3+4) = \quad \)[/tex]
2. [tex]\( 6 \times (5+2) = \quad \)[/tex]
3. [tex]\( 4 \times (7-3) = \quad \)[/tex]
4. [tex]\( 5 \times (8-4) = \quad \)[/tex]
5. [tex]\( 3 \times (2+5) = \quad \)[/tex]



Answer :

Certainly, let's break down each term step-by-step to understand the calculations.

1. [tex]\(5 \times (3 + 4)\)[/tex]

- First, calculate inside the parentheses: [tex]\(3 + 4 = 7\)[/tex]
- Then, multiply by 5: [tex]\(5 \times 7 = 35\)[/tex]

2. [tex]\(6 \times (5 + 2)\)[/tex]

- First, calculate inside the parentheses: [tex]\(5 + 2 = 7\)[/tex]
- Then, multiply by 6: [tex]\(6 \times 7 = 42\)[/tex]

3. [tex]\(4 \times (7 - 3)\)[/tex]

- First, calculate inside the parentheses: [tex]\(7 - 3 = 4\)[/tex]
- Then, multiply by 4: [tex]\(4 \times 4 = 16\)[/tex]

4. [tex]\(5 \times (8 - 4)\)[/tex]

- First, calculate inside the parentheses: [tex]\(8 - 4 = 4\)[/tex]
- Then, multiply by 5: [tex]\(5 \times 4 = 20\)[/tex]

5. [tex]\(3 \times (2 + 5)\)[/tex]

- First, calculate inside the parentheses: [tex]\(2 + 5 = 7\)[/tex]
- Then, multiply by 3: [tex]\(3 \times 7 = 21\)[/tex]

Given the above steps, the detailed solutions for each term are as follows:
- [tex]\(5 \times (3 + 4) = 35\)[/tex]
- [tex]\(6 \times (5 + 2) = 42\)[/tex]
- [tex]\(4 \times (7 - 3) = 16\)[/tex]
- [tex]\(5 \times (8 - 4) = 20\)[/tex]
- [tex]\(3 \times (2 + 5) = 21\)[/tex]

So, the corresponding results are:
[tex]\[ [35, 42, 16, 20, 21] \][/tex]