4. If a line through the points [tex]$(7,7)$[/tex] and [tex]$(4, y)$[/tex] is perpendicular to the line [tex]$3x + 10y = 6$[/tex], what is the value of [tex][tex]$y$[/tex][/tex]?

A. [tex]$y = -6$[/tex]
B. [tex]$y = 1$[/tex]
C. [tex][tex]$y = -3$[/tex][/tex]
D. [tex]$y = 6$[/tex]



Answer :

To determine the value of [tex]\( y \)[/tex] for which the line passing through the points [tex]\((7,7)\)[/tex] and [tex]\((4,y)\)[/tex] is perpendicular to the line [tex]\( 3x + 10y = 6 \)[/tex], we can follow these steps:

1. Determine the slope of the given line [tex]\( 3x + 10y = 6 \)[/tex]:
- Convert the equation to the slope-intercept form [tex]\( y = mx + b \)[/tex].
- Start with [tex]\( 3x + 10y = 6 \)[/tex].
- Solve for [tex]\( y \)[/tex]:
[tex]\[ 10y = -3x + 6 \][/tex]
[tex]\[ y = -\frac{3}{10}x + \frac{6}{10} \][/tex]
- Therefore, the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{3}{10} \)[/tex].

2. Determine the slope of the line that is perpendicular to this line:
- The slopes of two perpendicular lines are negative reciprocals of each other. This means if the slope of one line is [tex]\( m \)[/tex], the slope of the line perpendicular to it is [tex]\( -\frac{1}{m} \)[/tex].
- Therefore, the slope of the line through [tex]\((7,7)\)[/tex] and [tex]\((4,y)\)[/tex] is:
[tex]\[ -\frac{1}{-\frac{3}{10}} = \frac{10}{3} \][/tex]

3. Use the slope formula to find [tex]\( y \)[/tex]:
- The slope formula for the line passing through points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
- Substitute [tex]\( x_1 = 7 \)[/tex], [tex]\( y_1 = 7 \)[/tex], [tex]\( x_2 = 4 \)[/tex], [tex]\( y_2 = y \)[/tex], and the slope [tex]\( \frac{10}{3} \)[/tex]:
[tex]\[ \frac{y - 7}{4 - 7} = \frac{10}{3} \][/tex]
[tex]\[ \frac{y - 7}{-3} = \frac{10}{3} \][/tex]
- Solve for [tex]\( y \)[/tex]:
[tex]\[ y - 7 = -3 \times \frac{10}{3} \][/tex]
[tex]\[ y - 7 = -10 \][/tex]
[tex]\[ y = -10 + 7 \][/tex]
[tex]\[ y = -3 \][/tex]

Therefore, the value of [tex]\( y \)[/tex] is [tex]\( -3 \)[/tex]. Thus, the correct answer is:
[tex]\[ y = -3 \][/tex]
So the answer is [tex]\( \boxed{-3} \)[/tex].

Other Questions