Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match each equation with its solution set.

[tex]\[ \begin{array}{l}
a^2 - 9a + 14 = 0 \\
a^2 + 9a + 14 = 0 \\
a^2 + 3a - 10 = 0 \\
a^2 + 5a - 14 = 0 \\
a^2 - 5a - 14 = 0 \\
\{2, -7\} \\
\{-2, -7\} \\
\{7, 2\} \\
\{-2, 7\} \\
\end{array} \][/tex]



Answer :

Let's match each given equation to its respective solution set based on the results.

1. Equation: [tex]\( a^2 - 9a + 14 = 0 \)[/tex]
- Solution Set: [tex]\(\{2, 7\}\)[/tex]

2. Equation: [tex]\( a^2 + 9a + 14 = 0 \)[/tex]
- Solution Set: [tex]\(\{-7, -2\}\)[/tex]

3. Equation: [tex]\( a^2 + 3a - 10 = 0 \)[/tex]
- Solution Set: [tex]\(\{-5, 2\}\)[/tex]

4. Equation: [tex]\( a^2 + 5a - 14 = 0 \)[/tex]
- Solution Set: [tex]\(\{-7, 2\}\)[/tex]

5. Equation: [tex]\( a^2 - 5a - 14 = 0 \)[/tex]
- Solution Set: [tex]\(\{-2, 7\}\)[/tex]

So, the correct pairs are:

- [tex]\( a^2 - 9a + 14 = 0 \)[/tex] → [tex]\(\{2, 7\}\)[/tex]
- [tex]\( a^2 + 9a + 14 = 0 \)[/tex] → [tex]\(\{-7, -2\}\)[/tex]
- [tex]\( a^2 + 3a - 10 = 0 \)[/tex] → [tex]\(\{-5, 2\}\)[/tex]
- [tex]\( a^2 + 5a - 14 = 0 \)[/tex] → [tex]\(\{-7, 2\}\)[/tex]
- [tex]\( a^2 - 5a - 14 = 0 \)[/tex] → [tex]\(\{-2, 7\}\)[/tex]