Answer :
To determine which list orders the fractions [tex]\(\frac{5}{6}\)[/tex], [tex]\(\frac{1}{12}\)[/tex], and [tex]\(\frac{3}{8}\)[/tex] from greatest to least, we need to compare their values.
1. First Fraction: [tex]\(\frac{5}{6}\)[/tex]
- Numerical value: [tex]\(\frac{5}{6} \approx 0.8333\)[/tex].
2. Second Fraction: [tex]\(\frac{1}{12}\)[/tex]
- Numerical value: [tex]\(\frac{1}{12} \approx 0.0833\)[/tex].
3. Third Fraction: [tex]\(\frac{3}{8}\)[/tex]
- Numerical value: [tex]\(\frac{3}{8} = 0.375\)[/tex].
Now we can compare the values calculated above:
- [tex]\(\frac{5}{6} \approx 0.8333\)[/tex]
- [tex]\(\frac{3}{8} = 0.375\)[/tex]
- [tex]\(\frac{1}{12} \approx 0.0833\)[/tex]
Ordering these from greatest to least, we get:
- Greatest: [tex]\(\frac{5}{6} \approx 0.8333\)[/tex]
- Middle: [tex]\(\frac{3}{8} = 0.375\)[/tex]
- Least: [tex]\(\frac{1}{12} \approx 0.0833\)[/tex]
Thus, the correct order from greatest to least for these fractions is:
[tex]\[ \frac{5}{6}, \frac{3}{8}, \frac{1}{12} \][/tex]
The correct answer is:
A. [tex]\(\frac{5}{6}, \frac{3}{8}, \frac{1}{12}\)[/tex]
1. First Fraction: [tex]\(\frac{5}{6}\)[/tex]
- Numerical value: [tex]\(\frac{5}{6} \approx 0.8333\)[/tex].
2. Second Fraction: [tex]\(\frac{1}{12}\)[/tex]
- Numerical value: [tex]\(\frac{1}{12} \approx 0.0833\)[/tex].
3. Third Fraction: [tex]\(\frac{3}{8}\)[/tex]
- Numerical value: [tex]\(\frac{3}{8} = 0.375\)[/tex].
Now we can compare the values calculated above:
- [tex]\(\frac{5}{6} \approx 0.8333\)[/tex]
- [tex]\(\frac{3}{8} = 0.375\)[/tex]
- [tex]\(\frac{1}{12} \approx 0.0833\)[/tex]
Ordering these from greatest to least, we get:
- Greatest: [tex]\(\frac{5}{6} \approx 0.8333\)[/tex]
- Middle: [tex]\(\frac{3}{8} = 0.375\)[/tex]
- Least: [tex]\(\frac{1}{12} \approx 0.0833\)[/tex]
Thus, the correct order from greatest to least for these fractions is:
[tex]\[ \frac{5}{6}, \frac{3}{8}, \frac{1}{12} \][/tex]
The correct answer is:
A. [tex]\(\frac{5}{6}, \frac{3}{8}, \frac{1}{12}\)[/tex]