The table of values represents a continuous function.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline[tex]$x$[/tex] & -3 & -1 & 1 & 3 & 5 & 7 & 9 & \\
\hline[tex]$g(x)$[/tex] & 0.375 & 0.75 & 1.5 & 3 & 6 & 12 & 24 \\
\hline
\end{tabular}

Which type of function describes [tex]$g(x)$[/tex]?

A. Exponential
B. Logarithmic
C. Polynomial
D. Rational



Answer :

To determine the type of function that describes [tex]\( g(x) \)[/tex], we can analyze the given table of values.

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline x & -3 & -1 & 1 & 3 & 5 & 7 & 9 \\ \hline g(x) & 0.375 & 0.75 & 1.5 & 3 & 6 & 12 & 24 \\ \hline \end{array} \][/tex]

Step-by-step solution:

1. Identify Rate of Change: Compare the ratio of consecutive [tex]\( g(x) \)[/tex] values. For an exponential function, the ratio of consecutive [tex]\( g(x) \)[/tex] values should be constant.

2. Calculate Ratios:

[tex]\[ \frac{g(-1)}{g(-3)} = \frac{0.75}{0.375} = 2.0 \][/tex]
[tex]\[ \frac{g(1)}{g(-1)} = \frac{1.5}{0.75} = 2.0 \][/tex]
[tex]\[ \frac{g(3)}{g(1)} = \frac{3}{1.5} = 2.0 \][/tex]
[tex]\[ \frac{g(5)}{g(3)} = \frac{6}{3} = 2.0 \][/tex]
[tex]\[ \frac{g(7)}{g(5)} = \frac{12}{6} = 2.0 \][/tex]
[tex]\[ \frac{g(9)}{g(7)} = \frac{24}{12} = 2.0 \][/tex]

3. Check Consistency: All these ratios are equal to [tex]\( 2.0 \)[/tex]. This consistent ratio confirms that the function describing [tex]\( g(x) \)[/tex] is exponential.

4. Conclusion: Since each ratio of consecutive [tex]\( g(x) \)[/tex] values is constant (2.0 in this case), [tex]\( g(x) \)[/tex] can be described by an exponential function.

So, the function [tex]\( g(x) \)[/tex] is Exponential.