What is the solution to [tex]$9|x+8|\ \textgreater \ 45$[/tex]?

A. [tex]$x\ \textless \ -3$[/tex] or [tex][tex]$x\ \textgreater \ 13$[/tex][/tex]

B. [tex]$-3\ \textless \ x\ \textless \ 13$[/tex]

C. [tex]$x\ \textless \ -13$[/tex] or [tex][tex]$x\ \textgreater \ -3$[/tex][/tex]

D. [tex]$-13\ \textless \ x\ \textless \ -3$[/tex]



Answer :

To solve the inequality [tex]\( 9|x+8| > 45 \)[/tex], let’s follow these steps:

### Step 1: Isolate the absolute value
First, divide both sides of the inequality by 9 to isolate the absolute value:

[tex]\[ |x + 8| > \frac{45}{9} \][/tex]

This simplifies to:

[tex]\[ |x + 8| > 5 \][/tex]

### Step 2: Remove the absolute value
We know that for any real number [tex]\( a \)[/tex]:

[tex]\[ |a| > b \quad \text{is equivalent to} \quad a > b \quad \text{or} \quad a < -b \][/tex]

Applying this to our inequality:

[tex]\[ x + 8 > 5 \quad \text{or} \quad x + 8 < -5 \][/tex]

### Step 3: Solve the inequalities
1. First Inequality:

[tex]\[ x + 8 > 5 \][/tex]

Subtract 8 from both sides:

[tex]\[ x > 5 - 8 \][/tex]

[tex]\[ x > -3 \][/tex]

2. Second Inequality:

[tex]\[ x + 8 < -5 \][/tex]

Subtract 8 from both sides:

[tex]\[ x < -5 - 8 \][/tex]

[tex]\[ x < -13 \][/tex]

### Step 4: Combine the solutions
The combined solution from both inequalities is:

[tex]\[ x > -3 \quad \text{or} \quad x < -13 \][/tex]

### Step 5: Match with the provided choices
Looking at the choices given:

- [tex]\( x < -3 \)[/tex] or [tex]\( x > 13 \)[/tex]
- [tex]\( -3 < x < 13 \)[/tex]
- [tex]\( x < -13 \)[/tex] or [tex]\( x > -3 \)[/tex]
- [tex]\( -13 < x < -3 \)[/tex]

The correct answer that matches our solution ([tex]\( x > -3 \)[/tex] or [tex]\( x < -13 \)[/tex]) is:

[tex]\[ \boxed{x < -13 \text{ or } x > -3} \][/tex]