Given [tex]$g(x)=\sqrt[3]{x+6}$[/tex], on what interval is the function negative?

A. [tex](-\infty, -6)[/tex]

B. [tex](-\infty, 6)[/tex]

C. [tex](-6, \infty)[/tex]

D. [tex](6, \infty)[/tex]



Answer :

To determine the interval over which the function [tex]\( g(x) = \sqrt[3]{x+6} \)[/tex] is negative, we need to understand when the expression inside the cube root results in a negative value.

### Step-by-Step Solution:

1. Identify the expression inside the cube root:
The function is given as [tex]\( g(x) = \sqrt[3]{x+6} \)[/tex].
Here, the expression inside the cube root is [tex]\( x + 6 \)[/tex].

2. Determine when the expression inside the cube root is negative:
The function [tex]\( g(x) \)[/tex] will be negative when:
[tex]\[ x + 6 < 0 \][/tex]

3. Solve for [tex]\( x \)[/tex] to find the critical value:
To find the value of [tex]\( x \)[/tex] that makes the expression inside the cube root zero, solve the inequality:
[tex]\[ x + 6 < 0 \][/tex]
Subtracting 6 from both sides:
[tex]\[ x < -6 \][/tex]

4. Write the interval where the function is negative:
The inequality [tex]\( x < -6 \)[/tex] tells us that [tex]\( g(x) \)[/tex] is negative for all [tex]\( x \)[/tex] less than -6.

5. Express the interval in interval notation:
In interval notation, this is written as:
[tex]\[ (-\infty, -6) \][/tex]

So, the interval over which the function [tex]\( g(x) = \sqrt[3]{x+6} \)[/tex] is negative is [tex]\((- \infty, -6)\)[/tex].

### Conclusion:
The correct interval from the given choices is:
[tex]\[ (-\infty, -6) \][/tex]