Given [tex]$g(x)=\sqrt[3]{x+6}$[/tex], on what interval is the function negative?

A. [tex]$(-\infty,-6)$[/tex]
B. [tex]$(-\infty, 6)$[/tex]
C. [tex]$(-6, \infty)$[/tex]
D. [tex]$(6, \infty)$[/tex]



Answer :

To determine the interval on which the function [tex]\( g(x) = \sqrt[3]{x + 6} \)[/tex] is negative, we need to consider the properties of the cube root function and the argument inside the cube root.

1. Understanding the Cube Root Function:
The cube root function, [tex]\( \sqrt[3]{y} \)[/tex], outputs a negative value when its argument [tex]\( y \)[/tex] is negative. Therefore, in order for [tex]\( g(x) \)[/tex] to be negative, the expression inside the cube root, [tex]\( x + 6 \)[/tex], must be negative.

2. Setting up the Inequality:
We need to solve the inequality:
[tex]\[ x + 6 < 0 \][/tex]

3. Solving the Inequality:
Subtract 6 from both sides to isolate [tex]\( x \)[/tex]:
[tex]\[ x < -6 \][/tex]

4. Defining the Interval:
The solution to this inequality tells us that [tex]\( g(x) \)[/tex] will be negative for all [tex]\( x \)[/tex] values that are less than [tex]\(-6\)[/tex].

Therefore, the interval on which the function [tex]\( g(x) = \sqrt[3]{x + 6} \)[/tex] is negative is:
[tex]\[ (-\infty, -6) \][/tex]

Thus, the correct choice from the given options is:
[tex]\[ (-\infty, -6) \][/tex]