What is the slope of the tangent line to [tex]\cos (x - y) = x e^z[/tex] at the point [tex]\left(0, \frac{5}{2}\right)[/tex]?

A. 0
B. 1
C. 2
D. -2
E. None of these



Answer :

To find the slope of the tangent line to the equation [tex]\(\cos(x - y) = x e^z\)[/tex] at the point [tex]\((0, \frac{5}{2})\)[/tex], we need to determine [tex]\(\frac{dy}{dx}\)[/tex] at this specific point. This process involves the following steps:

1. Implicit Differentiation: Differentiate the given equation [tex]\(\cos(x - y) = x e^z\)[/tex] with respect to [tex]\(x\)[/tex], treating [tex]\(y\)[/tex] as a function of [tex]\(x\)[/tex].

[tex]\[ \frac{d}{dx}[\cos(x - y)] = \frac{d}{dx}[x e^z] \][/tex]

2. Apply Chain Rule: Differentiate each side with respect to [tex]\(x\)[/tex].

Let’s start with the left-hand side:
[tex]\[ \frac{d}{dx}[\cos(x - y)] = -\sin(x - y) \cdot \frac{d}{dx}[x - y] \][/tex]
[tex]\[ = -\sin(x - y) \cdot \left(\frac{d}{dx}[x] - \frac{d}{dx}[y]\right) \][/tex]
[tex]\[ = -\sin(x - y) \cdot (1 - \frac{dy}{dx}) \][/tex]

Now the right-hand side:
[tex]\[ \frac{d}{dx}[x e^z] = e^z \cdot \frac{d}{dx}[x] + x \cdot \frac{d}{dx}[e^z] \][/tex]
[tex]\[ = e^z \cdot 1 + x \cdot 0 \quad (\text{because } e^z \text{ is a constant with respect to } x) \][/tex]
[tex]\[ = e^z \][/tex]

3. Combine Differentiated Results:
[tex]\[ -\sin(x - y) \cdot (1 - \frac{dy}{dx}) = e^z \][/tex]

4. Solve for [tex]\(\frac{dy}{dx}\)[/tex]:

Distribute [tex]\(-\sin(x - y)\)[/tex]:
[tex]\[ -\sin(x - y) + \sin(x - y) \cdot \frac{dy}{dx} = e^z \][/tex]
[tex]\[ \sin(x - y) \cdot \frac{dy}{dx} = e^z + \sin(x - y) \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{e^z + \sin(x - y)}{\sin(x - y)} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{e^z}{\sin(x - y)} + 1 \][/tex]

Now simplify further to:
[tex]\[ \frac{dy}{dx} = \frac{e^z + \sin(x - y)}{\sin(x - y)} \][/tex]

5. Evaluate at the Point [tex]\((0, \frac{5}{2})\)[/tex]:

Substitute [tex]\(x = 0\)[/tex] and [tex]\(y = \frac{5}{2}\)[/tex]:
[tex]\[ \frac{dy}{dx} \bigg|_{(0, \frac{5}{2})} = \frac{e^z - \sin(\frac{5}{2})}{\sin(\frac{5}{2})} \][/tex]

Thus, the slope of the tangent line at the given point is:
[tex]\[ -(e^z - \sin(\frac{5}{2}))/\sin(\frac{5}{2}) \][/tex]

From our provided choices, this does not match any of the listed options (0, 1, 2, -2). Therefore, the correct answer is:

None of these.