To determine the energy required to melt 2 kg of copper, we use the equation for the heat energy required to change the phase of a substance:
[tex]\[ Q = m L_{\text{fusion}} \][/tex]
Where:
- [tex]\( Q \)[/tex] is the heat energy (in kJ),
- [tex]\( m \)[/tex] is the mass of the substance (in kg),
- [tex]\( L_{\text{fusion}} \)[/tex] is the latent heat of fusion (in kJ/kg).
From the table provided, we know that the latent heat of fusion for copper ([tex]\( L_{\text{fusion, copper}} \)[/tex]) is 207 kJ/kg.
Given:
- [tex]\( m = 2 \, \text{kg} \)[/tex]
- [tex]\( L_{\text{fusion, copper}} = 207 \, \text{kJ/kg} \)[/tex]
Plugging these values into the equation, we get:
[tex]\[ Q = 2 \, \text{kg} \times 207 \, \text{kJ/kg} \][/tex]
[tex]\[ Q = 414 \, \text{kJ} \][/tex]
Thus, the energy required to melt 2 kg of copper is:
414 kJ
Therefore, the correct answer is:
A. 414 kJ