How much energy is required to melt 2 kg of copper? Use the table below and this equation: [tex]Q = m L_{\text{fusion}}[/tex].

\begin{tabular}{|c|c|c|c|c|}
\hline
Substance & \begin{tabular}{c}
Latent Heat \\
Fusion \\
(melting) \\
(kJ/kg)
\end{tabular} & \begin{tabular}{c}
Melting \\
Point \\
[tex]$\left(^{\circ} C \right)$[/tex]
\end{tabular} & \begin{tabular}{c}
Latent Heat \\
Vaporization \\
(boiling) (kJ/kg)
\end{tabular} & \begin{tabular}{c}
Boiling \\
Point \\
[tex]$\left(^{\circ} C \right)$[/tex]
\end{tabular} \\
\hline
Aluminum & 400 & 660 & 1100 & 2450 \\
\hline
Copper & 207 & 1083 & 4730 & 2566 \\
\hline
Gold & 62.8 & 1063 & 1720 & 2808 \\
\hline
Helium & 5.2 & -270 & 21 & -269 \\
\hline
Lead & 24.5 & 327 & 871 & 1751 \\
\hline
Mercury & 11.4 & -39 & 296 & 357 \\
\hline
Water & 335 & 0 & 2256 & 100 \\
\hline
\end{tabular}

A. 414 kJ
B. 125.6 kJ
C. 4730 kJ
D. 9460 kJ



Answer :

To determine the energy required to melt 2 kg of copper, we use the equation for the heat energy required to change the phase of a substance:

[tex]\[ Q = m L_{\text{fusion}} \][/tex]

Where:
- [tex]\( Q \)[/tex] is the heat energy (in kJ),
- [tex]\( m \)[/tex] is the mass of the substance (in kg),
- [tex]\( L_{\text{fusion}} \)[/tex] is the latent heat of fusion (in kJ/kg).

From the table provided, we know that the latent heat of fusion for copper ([tex]\( L_{\text{fusion, copper}} \)[/tex]) is 207 kJ/kg.

Given:
- [tex]\( m = 2 \, \text{kg} \)[/tex]
- [tex]\( L_{\text{fusion, copper}} = 207 \, \text{kJ/kg} \)[/tex]

Plugging these values into the equation, we get:

[tex]\[ Q = 2 \, \text{kg} \times 207 \, \text{kJ/kg} \][/tex]

[tex]\[ Q = 414 \, \text{kJ} \][/tex]

Thus, the energy required to melt 2 kg of copper is:

414 kJ

Therefore, the correct answer is:

A. 414 kJ