The graph of an absolute value function has a vertex of [tex](2,3)[/tex] and crosses the [tex]x[/tex]-axis at [tex](-1,0)[/tex] and [tex](5,0)[/tex].

What is the equation for this absolute value function when [tex]y=0[/tex]?

A. [tex]0=|x+2|+3[/tex]
B. [tex]0=|x-2|+3[/tex]
C. [tex]0=-|x+2|+3[/tex]
D. [tex]0=-|x-2|+3[/tex]



Answer :

To determine the equation of the absolute value function that has a vertex at [tex]\((2, 3)\)[/tex] and crosses the [tex]\(x\)[/tex]-axis at the points [tex]\((-1, 0)\)[/tex] and [tex]\((5, 0)\)[/tex], follow these steps:

1. Form of the Absolute Value Function:
The general form for an absolute value function with a vertex [tex]\((h, k)\)[/tex] is:
[tex]\[ y = a|x - h| + k \][/tex]
Here, the vertex is [tex]\((2, 3)\)[/tex], so the form of the function is:
[tex]\[ y = a|x - 2| + 3 \][/tex]

2. Determining the Value of [tex]\(a\)[/tex]:
Given that the function crosses the [tex]\(x\)[/tex]-axis at points where [tex]\(y = 0\)[/tex], we can use these points to find the value of [tex]\(a\)[/tex].

1. Substitute the crossing point [tex]\((-1, 0)\)[/tex] into the equation:
[tex]\[ 0 = a|(-1) - 2| + 3 \][/tex]
Simplify the absolute value:
[tex]\[ 0 = a| -3 | + 3 \][/tex]
[tex]\[ 0 = 3a + 3 \][/tex]
Solve for [tex]\(a\)[/tex]:
[tex]\[ 0 - 3 = 3a \][/tex]
[tex]\[ -3 = 3a \][/tex]
[tex]\[ a = -1 \][/tex]

3. Substitute the Value of [tex]\(a\)[/tex] into the Equation:
Now that we have [tex]\(a = -1\)[/tex], substitute this back into the general form of the function:
[tex]\[ y = -|x - 2| + 3 \][/tex]

4. Equation When [tex]\(y = 0\)[/tex]:
Given [tex]\(y = 0\)[/tex], the equation becomes:
[tex]\[ 0 = -|x - 2| + 3 \][/tex]

Thus, the equation for the given absolute value function when [tex]\(y = 0\)[/tex] is:
[tex]\[ D. \, 0 = -|x - 2| + 3 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
can best be defined as; understanding what your interests
are,
having the skills you need for a job, and knowing how to present yourself in a job interview.