Answer :

Let's consider the given summation:

[tex]$\sum_{k=3}^{\infty} \left( \frac{3}{4} \right)^{k-4} \left( \frac{3}{4} \right)^{3-k}$[/tex]

First, we can simplify the expression inside the summation. Notice that:

[tex]$\left( \frac{3}{4} \right)^{k-4} \left( \frac{3}{4} \right)^{3-k}$[/tex]

In this expression, we can combine the exponents of the common base [tex]\(\frac{3}{4}\)[/tex]:

[tex]$ \left( \frac{3}{4} \right)^{k-4} \cdot \left( \frac{3}{4} \right)^{3-k} = \left( \frac{3}{4} \right)^{(k-4) + (3-k)}$[/tex]

Next, simplify the exponent:

[tex]$ (k-4) + (3-k) = k - 4 + 3 - k = -1$[/tex]

Thus, the expression simplifies to:

[tex]$ \left( \frac{3}{4} \right)^{-1} = \frac{1}{\left( \frac{3}{4} \right)} = \frac{4}{3}$[/tex]

So the summation becomes:

[tex]$ \sum_{k=3}^{\infty} \frac{4}{3} $[/tex]

This is now a summation of a constant value, [tex]\(\frac{4}{3}\)[/tex], from [tex]\(k = 3\)[/tex] to [tex]\(\infty\)[/tex]. We express the summation of a constant as:

[tex]$ \sum_{k=3}^{\infty} \frac{4}{3} $[/tex]

When you sum a constant over an infinite number of terms, the series does not converge to a finite value. Instead, it diverges. Since we are summing an infinite series of the constant [tex]\(\frac{4}{3}\)[/tex], the series diverges to infinity.

Hence, the summation:

[tex]$ \sum_{k=3}^{\infty} \left( \frac{3}{4} \right)^{k-4} \left( \frac{3}{4} \right)^{3-k} $[/tex]

diverges, and its value is:

[tex]$ \infty $[/tex]