If [tex]\( C = x^2 + 7x + 5 \)[/tex] and [tex]\( D = x^2 - 8 \)[/tex], find an expression that equals [tex]\( 3C - 2D \)[/tex] in standard form.



Answer :

Let's find the expression for [tex]\(3C - 2D\)[/tex] in standard form given [tex]\(C = x^2 + 7x + 5\)[/tex] and [tex]\(D = x^2 - 8\)[/tex].

1. Calculate [tex]\(3C\)[/tex]:
[tex]\[ C = x^2 + 7x + 5 \][/tex]
Multiplying this expression by 3:
[tex]\[ 3C = 3(x^2 + 7x + 5) \][/tex]
Distribute the 3 across each term in the parentheses:
[tex]\[ 3C = 3x^2 + 21x + 15 \][/tex]

2. Calculate [tex]\(2D\)[/tex]:
[tex]\[ D = x^2 - 8 \][/tex]
Multiplying this expression by 2:
[tex]\[ 2D = 2(x^2 - 8) \][/tex]
Distribute the 2 across each term in the parentheses:
[tex]\[ 2D = 2x^2 - 16 \][/tex]

3. Subtract [tex]\(2D\)[/tex] from [tex]\(3C\)[/tex]:
[tex]\[ 3C - 2D = (3x^2 + 21x + 15) - (2x^2 - 16) \][/tex]
Distribute the subtraction across each term of [tex]\(2D\)[/tex]:
[tex]\[ 3C - 2D = 3x^2 + 21x + 15 - 2x^2 + 16 \][/tex]

4. Combine like terms:
Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ 3x^2 - 2x^2 = x^2 \][/tex]
Combine the [tex]\(x\)[/tex] terms (there is only one [tex]\(21x\)[/tex]):
[tex]\[ 21x \][/tex]
Combine the constant terms:
[tex]\[ 15 + 16 = 31 \][/tex]

Putting it all together, we get:
[tex]\[ 3C - 2D = x^2 + 21x + 31 \][/tex]

The expression in standard form for [tex]\(3C - 2D\)[/tex] is:
[tex]\[ x^2 + 21x + 31 \][/tex]