For which of the following equations is [tex](-4, -3)[/tex] not a solution?

A. [tex]5x + 2y = -26[/tex]
B. [tex]2y - 3x = 6[/tex]
C. [tex]-3x = 4y[/tex]
D. [tex]y = 1 + x[/tex]



Answer :

To determine which equation [tex]\( (-4, -3) \)[/tex] does not satisfy, we need to substitute the coordinates [tex]\( x = -4 \)[/tex] and [tex]\( y = -3 \)[/tex] into each given equation and verify the results.

1. Equation 1: [tex]\( 5x + 2y = -26 \)[/tex]

Substitute [tex]\( x = -4 \)[/tex] and [tex]\( y = -3 \)[/tex]:
[tex]\[ 5(-4) + 2(-3) = -20 - 6 = -26 \][/tex]
The left side equals the right side ([tex]\(-26\)[/tex]), so [tex]\( (-4, -3) \)[/tex] is a solution to the first equation.

2. Equation 2: [tex]\( 2y - 3x = 6 \)[/tex]

Substitute [tex]\( x = -4 \)[/tex] and [tex]\( y = -3 \)[/tex]:
[tex]\[ 2(-3) - 3(-4) = -6 + 12 = 6 \][/tex]
The left side equals the right side ([tex]\(6\)[/tex]), so [tex]\( (-4, -3) \)[/tex] is a solution to the second equation.

3. Equation 3: [tex]\( -3x = 4y \)[/tex]

Substitute [tex]\( x = -4 \)[/tex] and [tex]\( y = -3 \)[/tex]:
[tex]\[ -3(-4) = 4(-3) \][/tex]
Simplify both sides:
[tex]\[ 12 \neq -12 \][/tex]
The left side does not equal the right side, so [tex]\( (-4, -3) \)[/tex] is not a solution to the third equation.

4. Equation 4: [tex]\( y = 1 + x \)[/tex]

Substitute [tex]\( x = -4 \)[/tex] and [tex]\( y = -3 \)[/tex]:
[tex]\[ -3 = 1 + (-4) = -3 \][/tex]
The left side equals the right side ([tex]\(-3\)[/tex]), so [tex]\( (-4, -3) \)[/tex] is a solution to the fourth equation.

After checking all four equations, we conclude that [tex]\( (-4, -3) \)[/tex] is not a solution for the equation:

[tex]\[ -3x = 4y \][/tex]

Thus, the correct equation for which [tex]\( (-4, -3) \)[/tex] is not a solution is the third one:

[tex]\[ -3x = 4y \][/tex]