What are the coordinates of the [tex]$x$[/tex]-intercept of the line [tex]$2x - y = 6$[/tex]?

A. [tex]$(0, -6)$[/tex]
B. [tex]$(0, 3)$[/tex]
C. [tex]$(-6, 0)$[/tex]
D. [tex]$(3, 0)$[/tex]



Answer :

To find the coordinates of the [tex]\( x \)[/tex]-intercept of the line represented by the equation [tex]\( 2x - y = 6 \)[/tex], we need to determine the point where the line crosses the [tex]\( x \)[/tex]-axis. At the [tex]\( x \)[/tex]-intercept, the value of [tex]\( y \)[/tex] is [tex]\( 0 \)[/tex].

Here is a detailed, step-by-step solution:

1. Set [tex]\( y = 0 \)[/tex] in the equation [tex]\( 2x - y = 6 \)[/tex]:
[tex]\[ 2x - 0 = 6 \][/tex]

2. Simplify the equation:
[tex]\[ 2x = 6 \][/tex]

3. Solve for [tex]\( x \)[/tex] by dividing both sides by 2:
[tex]\[ x = \frac{6}{2} = 3 \][/tex]

Therefore, the [tex]\( x \)[/tex]-intercept occurs at the point where [tex]\( x = 3 \)[/tex] and [tex]\( y = 0 \)[/tex]. The coordinates of the [tex]\( x \)[/tex]-intercept are:
[tex]\[ (3, 0) \][/tex]

Thus, the correct answer is:
[tex]\[ (3, 0) \][/tex]