[tex]$
BC = \sqrt{e^2 + 1}
$[/tex]
Application of the distance formula:
[tex]$
CA = \sqrt{d - e^2} = d - e
$[/tex]

\begin{tabular}{|c|c|}
\hline
\begin{tabular}{l}
7. [tex]$\left(\sqrt{1 + d^2}\right)^2 + \left(\sqrt{e^2 + 1}\right)^2 = $[/tex] ?
\end{tabular} & Pythagorean theorem \\
\hline
\begin{tabular}{l}
\begin{aligned}
\left(1 + d^2\right) + \left(e^2 + 1\right) & = d^2 - 2de + e^2 \\
2 + d^2 + e^2 & = d^2 - 2de + e^2 \\
2 & = -2de \\
-1 & = de
\end{aligned}
\end{tabular} & simplify \\
\hline
[tex]$9: -1 = m_{AB} m_{BC}$[/tex] & substitution property of equality \\
\hline
\end{tabular}

Which expression is missing from step 7?

A. [tex]$A^2 + B^2$[/tex]

B. [tex]$-2de$[/tex]

C. [tex]$(A + B)^2$[/tex]

D. [tex]$(d - e)^2$[/tex]



Answer :

Let's carefully analyze the steps provided to determine which expression is missing in step 7.

Given:
[tex]\[ (\sqrt{1 + d^2})^2 + (\sqrt{e^2 + 1})^2 \][/tex]

Step-by-step simplification:

1. Consider each term separately:
[tex]\[ (\sqrt{1 + d^2})^2 = 1 + d^2 \][/tex]
[tex]\[ (\sqrt{e^2 + 1})^2 = e^2 + 1 \][/tex]

2. Adding these simplified results together:
[tex]\[ (1 + d^2) + (e^2 + 1) \][/tex]
Simplifying further by combining like terms:
[tex]\[ 1 + d^2 + e^2 + 1 = 2 + d^2 + e^2 \][/tex]

3. According to the problem, this should be equal to:
[tex]\[ d^2 - 2de + e^2 \][/tex]

4. Equate the two expressions:
[tex]\[ 2 + d^2 + e^2 = d^2 - 2de + e^2 \][/tex]

5. To solve for the missing term, subtract [tex]\( d^2 \)[/tex] and [tex]\( e^2 \)[/tex] from both sides:
[tex]\[ 2 = -2de \][/tex]

6. Then solve for [tex]\( de \)[/tex]:
[tex]\[ -1 = de \][/tex]

Therefore, the missing expression that equates the two sides in step 7 is:
[tex]\[ \boxed{-2 d e} \][/tex]