Answer :

Let's break down the given expression step by step: [tex]\(\sqrt{17}(10 \sqrt{17} - 2 \sqrt{17})\)[/tex].

1. Simplify the expression inside the parentheses:

[tex]\[ 10 \sqrt{17} - 2 \sqrt{17} \][/tex]

Since both terms have [tex]\(\sqrt{17}\)[/tex], we can combine them:

[tex]\[ (10 - 2) \sqrt{17} = 8 \sqrt{17} \][/tex]

So, the expression now is:

[tex]\[ \sqrt{17} \cdot 8 \sqrt{17} \][/tex]

2. Multiply the terms:

When you multiply [tex]\(\sqrt{17}\)[/tex] by [tex]\(8\sqrt{17}\)[/tex], you can treat [tex]\(\sqrt{17} \cdot \sqrt{17}\)[/tex] as:

[tex]\[ \sqrt{17} \cdot \sqrt{17} = 17 \][/tex]

So, the expression progresses as follows:

[tex]\[ \sqrt{17} \cdot 8 \sqrt{17} = 8 \cdot (\sqrt{17} \cdot \sqrt{17}) = 8 \cdot 17 \][/tex]

3. Perform the multiplication:

[tex]\[ 8 \cdot 17 = 136 \][/tex]

Therefore, the simplified value of the given expression [tex]\(\sqrt{17}(10 \sqrt{17} - 2 \sqrt{17})\)[/tex] is [tex]\[ \boxed{136} \][/tex]

Additionally, the intermediate value inside the parentheses is [tex]\(8 \sqrt{17}\)[/tex], which is approximately [tex]\(32.984845004941285\)[/tex].