Answer :

To determine the slope of the line passing through the points [tex]\((-2, 7)\)[/tex] and [tex]\((2, 3)\)[/tex], we use the slope formula:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Where [tex]\((x_1, y_1)\)[/tex] is the first point and [tex]\((x_2, y_2)\)[/tex] is the second point.

Given:
[tex]\[ (x_1, y_1) = (-2, 7) \\ (x_2, y_2) = (2, 3) \][/tex]

Substitute these coordinates into the slope formula:

[tex]\[ m = \frac{3 - 7}{2 - (-2)} \][/tex]

First, calculate the numerator:
[tex]\[ 3 - 7 = -4 \][/tex]

Next, calculate the denominator:
[tex]\[ 2 - (-2) = 2 + 2 = 4 \][/tex]

Now, substitute the values back into the formula:

[tex]\[ m = \frac{-4}{4} = -1 \][/tex]

Thus, the slope of the line that contains the points [tex]\((-2, 7)\)[/tex] and [tex]\((2, 3)\)[/tex] is:

[tex]\[ m = -1 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{-1} \][/tex]