Solve for [tex]\( x \)[/tex]:
[tex]\[ -5x \leq 20 \][/tex]

A. [tex]\( x \geq -4 \)[/tex]
B. [tex]\( x \leq -4 \)[/tex]
C. [tex]\( x \geq 4 \)[/tex]
D. [tex]\( x = -4 \)[/tex]



Answer :

To solve the inequality [tex]\(-5x \leq 20\)[/tex] for [tex]\(x\)[/tex], follow these steps:

1. Identify the Inequality:
We start with [tex]\(-5x \leq 20\)[/tex].

2. Isolate [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], we need to divide both sides of the inequality by [tex]\(-5\)[/tex]. When you divide or multiply an inequality by a negative number, the direction of the inequality sign must be reversed.

[tex]\[ -5x \leq 20 \][/tex]

Dividing both sides by [tex]\(-5\)[/tex]:

[tex]\[ x \geq \frac{20}{-5} \][/tex]

3. Simplify the Right-Hand Side:
Simplify the fraction on the right-hand side of the inequality:

[tex]\[ x \geq -4 \][/tex]

Therefore, the solution to the inequality [tex]\(-5x \leq 20\)[/tex] is [tex]\(\boxed{x \geq -4}\)[/tex]. This means that [tex]\(x\)[/tex] can be any number greater than or equal to [tex]\(-4\)[/tex].