A student sets up the following equation to solve a problem in solution stoichiometry. (The ? stands for a number the student is going to calculate.) Enter the units of the student's answer.

[tex]\[
\left(5.7 \frac{ \text{mol} }{ \text{L} }\right)(0.34 \, \text{L})\left(112.30 \frac{ \text{g} }{ \text{mol} }\right) = \, ? \, \square
\][/tex]



Answer :

Sure, let's break down the equation and determine the units of the student's answer step-by-step.

The student has the following equation:
[tex]\[ \left(5.7 \frac{ \text{mol} }{ \text{L} }\right)\left(0.34 \text{L}\right)\left(112.30 \frac{ \text{g} }{ \text{mol} }\right)=\text{ ? } \square \][/tex]

1. Identify the units of each term in the equation:
- [tex]\(5.7 \frac{ \text{mol} }{ \text{L} }\)[/tex] has units of [tex]\(\frac{ \text{mol} }{ \text{L} }\)[/tex]
- [tex]\(0.34 \text{L}\)[/tex] has units of [tex]\(\text{L}\)[/tex]
- [tex]\(112.30 \frac{ \text{g} }{ \text{mol} }\)[/tex] has units of [tex]\(\frac{ \text{g} }{ \text{mol} }\)[/tex]

2. Combine the units by multiplying term-by-term:
- First, combine [tex]\(5.7 \frac{ \text{mol} }{ \text{L} }\)[/tex] and [tex]\(0.34 \text{L}\)[/tex]:
[tex]\[ \left(5.7 \frac{ \text{mol} }{ \text{L} }\right) \times \left(0.34 \text{L}\right) = 5.7 \times 0.34 \left( \frac{ \text{mol} }{ \text{L} } \times \text{L} \right) = 5.7 \times 0.34 \text{mol} \][/tex]
Notice that the liters (L) cancel out, leaving us with moles (mol).

- Next, take the result in moles and multiply by [tex]\(112.30 \frac{ \text{g} }{ \text{mol} }\)[/tex]:
[tex]\[ (5.7 \times 0.34 \text{mol}) \times \left(112.30 \frac{ \text{g} }{ \text{mol} }\right) = 5.7 \times 0.34 \times 112.30 \left( \text{mol} \times \frac{ \text{g} }{ \text{mol} } \right) = 5.7 \times 0.34 \times 112.30 \text{g} \][/tex]
Here, the moles (mol) cancel out, leaving us with grams (g).

3. Conclusion:
- The remaining unit after canceling out in the multiplication process is grams (g).

So, the units of the student's answer are:
[tex]\[ \boxed{g} \][/tex]