Select the correct answer.

Which expression is equivalent to the given expression?

[tex]\[ \sqrt{45} \][/tex]

A. [tex]\[3 \sqrt{5}\][/tex]

B. [tex]\[9 \sqrt{5}\][/tex]

C. [tex]\[5 \sqrt{3}\][/tex]

D. [tex]\[5 \sqrt{9}\][/tex]



Answer :

To determine which expression is equivalent to [tex]\(\sqrt{45}\)[/tex], let's go through the simplification step by step.

1. Prime factorization of 45:
[tex]\[ 45 = 3 \times 3 \times 5 = 3^2 \times 5 \][/tex]

2. Simplifying the square root:
[tex]\[ \sqrt{45} = \sqrt{3^2 \times 5} = \sqrt{3^2} \times \sqrt{5} = 3 \times \sqrt{5} = 3\sqrt{5} \][/tex]

Therefore, the correct expression that is equivalent to [tex]\(\sqrt{45}\)[/tex] is:

A. [tex]\(3 \sqrt{5}\)[/tex]