\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
[tex]$-3.8$[/tex] & [tex]$-3.1$[/tex] \\
\hline
[tex]$b$[/tex] & [tex]$3.2$[/tex] \\
\hline
[tex]$-1.4$[/tex] & [tex]$c$[/tex] \\
\hline
[tex]$-0.2$[/tex] & [tex]$4.4$[/tex] \\
\hline
[tex]$1.0$[/tex] & [tex]$5.0$[/tex] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
[tex]$-3.1$[/tex] & [tex]$a$[/tex] \\
\hline
[tex]$3.2$[/tex] & [tex]$-2.6$[/tex] \\
\hline
[tex]$1.7$[/tex] & [tex]$-1.4$[/tex] \\
\hline
[tex]$d$[/tex] & [tex]$-0.2$[/tex] \\
\hline
[tex]$5.0$[/tex] & [tex]$e$[/tex] \\
\hline
\end{tabular}

Find the values of [tex]$a$[/tex] through [tex]$e$[/tex] that make these two relations inverses of each other.

[tex]$
\begin{array}{l}
a=\square \\
b=\square \\
c=\square \\
d=\square \\
e=\square
\end{array}
$[/tex]



Answer :

To solve this problem, we need to find the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], [tex]\( c \)[/tex], [tex]\( d \)[/tex], and [tex]\( e \)[/tex] that make the two relations inverses of each other. Two relations are inverses if the pair [tex]\( (x, y) \)[/tex] from one relation matches the pair [tex]\( (y, x) \)[/tex] in the other.

We will proceed by comparing corresponding pairs:

1. Finding [tex]\( a \)[/tex]:
- From the first table: [tex]\( (-3.8, -3.1) \)[/tex]
- From the second table, we need to find [tex]\( a \)[/tex] such that [tex]\( (-3.1, a) \)[/tex] matches with [tex]\( (-3.8, -3.1) \)[/tex].
- Therefore, [tex]\( a = -3.8 \)[/tex].

2. Finding [tex]\( b \)[/tex]:
- From the first table: [tex]\( (b, 3.2) \)[/tex]
- From the second table, we need to find [tex]\( b \)[/tex] such that [tex]\( (3.2, -2.6) \)[/tex] matches with [tex]\( (b, 3.2) \)[/tex].
- Therefore, [tex]\( b = -2.6 \)[/tex].

3. Finding [tex]\( c \)[/tex]:
- From the first table: [tex]\( (-1.4, c) \)[/tex]
- From the second table, we need to find [tex]\( c \)[/tex] such that [tex]\( (1.7, -1.4) \)[/tex] matches with [tex]\( (-1.4, c) \)[/tex].
- Therefore, [tex]\( c = 1.7 \)[/tex].

4. Finding [tex]\( d \)[/tex]:
- From the first table: [tex]\( (-0.2, 4.4) \)[/tex]
- From the second table, we need to find [tex]\( d \)[/tex] such that [tex]\( (d, -0.2) \)[/tex] matches with [tex]\( (-0.2, 4.4) \)[/tex].
- Therefore, [tex]\( d = 4.4 \)[/tex].

5. Finding [tex]\( e \)[/tex]:
- From the first table: [tex]\( (1.0, 5.0) \)[/tex]
- From the second table, we need to find [tex]\( e \)[/tex] such that [tex]\( (5.0, e) \)[/tex] matches with [tex]\( (1.0, 5.0) \)[/tex].
- Therefore, [tex]\( e = 1.0 \)[/tex].

Thus, the values that make the relations inverses of each other are:
[tex]\[ \begin{array}{l} a = -3.8 \\ b = -2.6 \\ c = 1.7 \\ d = 4.4 \\ e = 1.0 \\ \end{array} \][/tex]