Answer :
To solve the system of linear equations:
[tex]\[ \left\{ \begin{array}{l} 2x - y + z = -8 \\ x + y + z = -4 \\ 3x - y - z = -4 \end{array} \right. \][/tex]
We will follow a systematic approach to find the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex].
### Step 1: Write down the system of equations
[tex]\[ \left\{ \begin{array}{l} 2x - y + z = -8 \quad \text{(1)} \\ x + y + z = -4 \quad \text{(2)} \\ 3x - y - z = -4 \quad \text{(3)} \end{array} \right. \][/tex]
### Step 2: Add Equation (1) and Equation (3) to eliminate [tex]\( y \)[/tex]
[tex]\[ 2x - y + z + 3x - y - z = -8 - 4 \][/tex]
[tex]\[ 5x - 2y = -12 \quad \text{(4)} \][/tex]
### Step 3: Add Equation (1) and Equation (2) to eliminate [tex]\( z \)[/tex]
[tex]\[ 2x - y + z + x + y + z = -8 - 4 \][/tex]
[tex]\[ 3x + 2z = -12 \quad \text{(5)} \][/tex]
### Step 4: Add Equation (2) and Equation (3) to eliminate [tex]\( y \)[/tex]
[tex]\[ x + y + z + 3x - y - z = -4 - 4 \][/tex]
[tex]\[ 4x = -8 \][/tex]
[tex]\[ x = -2 \quad \text{(6)} \][/tex]
### Step 5: Substitute [tex]\( x = -2 \)[/tex] back into Equation (4) and Equation (5)
#### Substitute [tex]\( x = -2 \)[/tex] in Equation (4):
[tex]\[ 5(-2) - 2y = -12 \][/tex]
[tex]\[ -10 - 2y = -12 \][/tex]
[tex]\[ -2y = -2 \][/tex]
[tex]\[ y = 1 \quad \text{(7)} \][/tex]
#### Substitute [tex]\( x = -2 \)[/tex] in Equation (5):
[tex]\[ 3(-2) + 2z = -12 \][/tex]
[tex]\[ -6 + 2z = -12 \][/tex]
[tex]\[ 2z = -6 \][/tex]
[tex]\[ z = -3 \quad \text{(8)} \][/tex]
### Step 6: Summarize the solution
The solution to the system of equations is:
[tex]\[ x = -2, \quad y = 1, \quad z = -3 \][/tex]
Thus, the correct answer is:
[tex]\[ (-2, 1, -3) \][/tex]
[tex]\[ \left\{ \begin{array}{l} 2x - y + z = -8 \\ x + y + z = -4 \\ 3x - y - z = -4 \end{array} \right. \][/tex]
We will follow a systematic approach to find the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex].
### Step 1: Write down the system of equations
[tex]\[ \left\{ \begin{array}{l} 2x - y + z = -8 \quad \text{(1)} \\ x + y + z = -4 \quad \text{(2)} \\ 3x - y - z = -4 \quad \text{(3)} \end{array} \right. \][/tex]
### Step 2: Add Equation (1) and Equation (3) to eliminate [tex]\( y \)[/tex]
[tex]\[ 2x - y + z + 3x - y - z = -8 - 4 \][/tex]
[tex]\[ 5x - 2y = -12 \quad \text{(4)} \][/tex]
### Step 3: Add Equation (1) and Equation (2) to eliminate [tex]\( z \)[/tex]
[tex]\[ 2x - y + z + x + y + z = -8 - 4 \][/tex]
[tex]\[ 3x + 2z = -12 \quad \text{(5)} \][/tex]
### Step 4: Add Equation (2) and Equation (3) to eliminate [tex]\( y \)[/tex]
[tex]\[ x + y + z + 3x - y - z = -4 - 4 \][/tex]
[tex]\[ 4x = -8 \][/tex]
[tex]\[ x = -2 \quad \text{(6)} \][/tex]
### Step 5: Substitute [tex]\( x = -2 \)[/tex] back into Equation (4) and Equation (5)
#### Substitute [tex]\( x = -2 \)[/tex] in Equation (4):
[tex]\[ 5(-2) - 2y = -12 \][/tex]
[tex]\[ -10 - 2y = -12 \][/tex]
[tex]\[ -2y = -2 \][/tex]
[tex]\[ y = 1 \quad \text{(7)} \][/tex]
#### Substitute [tex]\( x = -2 \)[/tex] in Equation (5):
[tex]\[ 3(-2) + 2z = -12 \][/tex]
[tex]\[ -6 + 2z = -12 \][/tex]
[tex]\[ 2z = -6 \][/tex]
[tex]\[ z = -3 \quad \text{(8)} \][/tex]
### Step 6: Summarize the solution
The solution to the system of equations is:
[tex]\[ x = -2, \quad y = 1, \quad z = -3 \][/tex]
Thus, the correct answer is:
[tex]\[ (-2, 1, -3) \][/tex]