Given the equation [tex]2 \sqrt{x-5}=2[/tex], solve for [tex]x[/tex] and identify if it is an extraneous solution.

A. [tex]x=6[/tex], solution is not extraneous
B. [tex]x=6[/tex], solution is extraneous
C. [tex]x=11[/tex], solution is not extraneous
D. [tex]x=11[/tex], solution is extraneous



Answer :

To solve the equation [tex]\(2 \sqrt{x-5} = 2\)[/tex] for [tex]\(x\)[/tex], let's follow the steps:

1. Isolate the square root term:

Given:
[tex]\[ 2 \sqrt{x-5} = 2 \][/tex]

First, divide both sides by 2 to isolate the square root:
[tex]\[ \sqrt{x-5} = 1 \][/tex]

2. Square both sides to eliminate the square root:

Squaring both sides of the equation, we get:
[tex]\[ (\sqrt{x-5})^2 = 1^2 \][/tex]
[tex]\[ x - 5 = 1 \][/tex]

3. Solve for [tex]\(x\)[/tex]:

Add 5 to both sides:
[tex]\[ x = 1 + 5 \][/tex]
[tex]\[ x = 6 \][/tex]

4. Check for extraneous solutions:

Substitute [tex]\(x = 6\)[/tex] back into the original equation to verify if it is a valid solution:
[tex]\[ 2 \sqrt{6 - 5} = 2 \][/tex]
[tex]\[ 2 \sqrt{1} = 2 \][/tex]
[tex]\[ 2 \cdot 1 = 2 \][/tex]
[tex]\[ 2 = 2 \][/tex]

Since the left-hand side equals the right-hand side when [tex]\( x = 6 \)[/tex], this solution is valid and not extraneous.

Therefore, for the given options:


- [tex]\(x = 6\)[/tex], solution is not extraneous
- [tex]\(x = 6\)[/tex], solution is extraneous
- [tex]\(x = 11\)[/tex], solution is not extraneous
- [tex]\(x = 11\)[/tex], solution is extraneous

The correct choice is:
[tex]\[ x = 6, \text{ solution is not extraneous} \][/tex]