Select the correct answer.

Points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] lie on a circle centered at point [tex]\( O \)[/tex]. If [tex]\( OA = 5 \)[/tex] and [tex]\(\frac{\text{length of } \widehat{AB}}{\text{circumference}} = \frac{1}{4}\)[/tex], what is the area of sector [tex]\( AOB \)[/tex]? Use the value [tex]\(\pi = 3.14\)[/tex], and choose the closest answer.

A. [tex]\( 19.6 \)[/tex] square units

B. [tex]\( 39.3 \)[/tex] square units

C. [tex]\( 7.85 \)[/tex] square units

D. [tex]\( 15.7 \)[/tex] square units



Answer :

To find the area of the sector [tex]\( AOB \)[/tex], where points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] lie on a circle centered at point [tex]\( O \)[/tex], we need to follow several steps given the information:

1. Radius of the circle:
The radius [tex]\( OA = 5 \)[/tex] units.

2. Circumference of the circle:
The circumference of a circle is given by the formula:
[tex]\[ \text{Circumference} = 2 \pi r \][/tex]
where [tex]\( r \)[/tex] is the radius and [tex]\( \pi = 3.14 \)[/tex]. Substituting the given radius:
[tex]\[ \text{Circumference} = 2 \times 3.14 \times 5 = 31.4 \text{ units} \][/tex]

3. Arc ratio:
The ratio of the length of the arc [tex]\( \widehat{AB} \)[/tex] to the circumference is given by:
[tex]\[ \frac{\text{length of} \; \widehat{AB}}{\text{circumference}} = \frac{1}{4} \][/tex]

4. Arc length:
The length of the arc [tex]\( \widehat{AB} \)[/tex] can be calculated using the above ratio and the circumference:
[tex]\[ \text{Arc length} = \frac{1}{4} \times 31.4 = 7.85 \text{ units} \][/tex]

5. Area of the circle:
The area of the entire circle is computed using the formula:
[tex]\[ \text{Area of Circle} = \pi r^2 \][/tex]
Substituting the radius:
[tex]\[ \text{Area of Circle} = 3.14 \times 5^2 = 3.14 \times 25 = 78.5 \text{ square units} \][/tex]

6. Area of the sector:
The sector [tex]\( AOB \)[/tex] is proportional to [tex]\( \frac{1}{4} \)[/tex] of the circle because the arc length is [tex]\( \frac{1}{4} \)[/tex] of the circumference. Therefore, the area of the sector is also [tex]\( \frac{1}{4} \)[/tex] of the total area of the circle:
[tex]\[ \text{Area of Sector} = \frac{1}{4} \times 78.5 = 19.625 \text{ square units} \][/tex]

Thus, the closest answer to the area of sector [tex]\( AOB \)[/tex] is:

[tex]\[ \boxed{19.6} \text{ square units} \][/tex]