Answer :

To solve the equation [tex]\(\log_2(3t + 4) - \log_2 t = 3\)[/tex], follow these steps:

1. Use Logarithm Properties:

Recall the logarithm property:
[tex]\[ \log_b A - \log_b B = \log_b \left(\frac{A}{B}\right) \][/tex]

Apply this property to our equation:
[tex]\[ \log_2 \left(\frac{3t + 4}{t}\right) = 3 \][/tex]

2. Simplify the Fraction:

Simplify the argument of the logarithm:
[tex]\[ \frac{3t + 4}{t} = \frac{3t}{t} + \frac{4}{t} = 3 + \frac{4}{t} \][/tex]

Rewrite the equation:
[tex]\[ \log_2 \left(3 + \frac{4}{t}\right) = 3 \][/tex]

3. Eliminate the Logarithm:

To isolate [tex]\(t\)[/tex], rewrite the logarithmic equation in its exponential form. Recall that if [tex]\(\log_b (A) = C\)[/tex], then [tex]\(A = b^C\)[/tex]. Hence:
[tex]\[ 3 + \frac{4}{t} = 2^3 \][/tex]

Since [tex]\(2^3 = 8\)[/tex]:
[tex]\[ 3 + \frac{4}{t} = 8 \][/tex]

4. Solve for [tex]\(t\)[/tex]:

Isolate [tex]\(\frac{4}{t}\)[/tex] by subtracting 3 from both sides:
[tex]\[ \frac{4}{t} = 5 \][/tex]

Solve for [tex]\(t\)[/tex] by multiplying both sides by [tex]\(t\)[/tex] and then dividing by 5:
[tex]\[ 4 = 5t \][/tex]
[tex]\[ t = \frac{4}{5} \][/tex]

Therefore, the solution to the equation [tex]\(\log_2(3t + 4) - \log_2 t = 3\)[/tex] is:
[tex]\[ t = \frac{4}{5} \][/tex]