Answer :
In order to determine Jimmy's total minimum credit card payment for the next 12 months, we need to follow these steps:
1. Calculate the monthly interest for each credit card:
The formula to calculate the monthly interest is:
[tex]\[ \text{Monthly Interest} = \frac{\text{Balance} \times \text{APR}}{\text{Number of Months}} \][/tex]
Let's calculate the monthly interest for each credit card:
- Credit Card A:
[tex]\[ \text{Balance} = 563.00 \quad \text{APR} = 0.16 \][/tex]
[tex]\[ \text{Monthly Interest} = \frac{563.00 \times 0.16}{12} = 7.5067 \][/tex]
- Credit Card B:
[tex]\[ \text{Balance} = 2525.00 \quad \text{APR} = 0.21 \][/tex]
[tex]\[ \text{Monthly Interest} = \frac{2525.00 \times 0.21}{12} = 44.1875 \][/tex]
- Credit Card C:
[tex]\[ \text{Balance} = 972.00 \quad \text{APR} = 0.19 \][/tex]
[tex]\[ \text{Monthly Interest} = \frac{972.00 \times 0.19}{12} = 15.39 \][/tex]
- Credit Card D:
[tex]\[ \text{Balance} = 389.00 \quad \text{APR} = 0.17 \][/tex]
[tex]\[ \text{Monthly Interest} = \frac{389.00 \times 0.17}{12} = 5.5108 \][/tex]
2. Calculate the minimum payment for each credit card:
The formula to calculate the minimum payment is:
[tex]\[ \text{Minimum Payment} = \frac{\text{Balance}}{\text{Number of Months}} + \text{Monthly Interest} \][/tex]
Let's calculate the minimum payment for each credit card:
- Credit Card A:
[tex]\[ \text{Minimum Payment} = \frac{563.00}{12} + 7.5067 = 46.9167 + 7.5067 = 54.4233 \][/tex]
- Credit Card B:
[tex]\[ \text{Minimum Payment} = \frac{2525.00}{12} + 44.1875 = 210.4167 + 44.1875 = 254.6042 \][/tex]
- Credit Card C:
[tex]\[ \text{Minimum Payment} = \frac{972.00}{12} + 15.39 = 81.0000 + 15.39 = 96.39 \][/tex]
- Credit Card D:
[tex]\[ \text{Minimum Payment} = \frac{389.00}{12} + 5.5108 = 32.4167 + 5.5108 = 37.9275 \][/tex]
3. Sum the minimum payments:
[tex]\[ \text{Total Minimum Payment} = 54.4233 + 254.6042 + 96.39 + 37.9275 = 443.345 \][/tex]
The total minimum payment necessary for Jimmy to pay off his credit card debts in 12 months is \[tex]$443.34. None of the provided choices match this value exactly. However, based on the closest numerical value provided, the correct answer is: \[ d. \$[/tex]411.25
\]
1. Calculate the monthly interest for each credit card:
The formula to calculate the monthly interest is:
[tex]\[ \text{Monthly Interest} = \frac{\text{Balance} \times \text{APR}}{\text{Number of Months}} \][/tex]
Let's calculate the monthly interest for each credit card:
- Credit Card A:
[tex]\[ \text{Balance} = 563.00 \quad \text{APR} = 0.16 \][/tex]
[tex]\[ \text{Monthly Interest} = \frac{563.00 \times 0.16}{12} = 7.5067 \][/tex]
- Credit Card B:
[tex]\[ \text{Balance} = 2525.00 \quad \text{APR} = 0.21 \][/tex]
[tex]\[ \text{Monthly Interest} = \frac{2525.00 \times 0.21}{12} = 44.1875 \][/tex]
- Credit Card C:
[tex]\[ \text{Balance} = 972.00 \quad \text{APR} = 0.19 \][/tex]
[tex]\[ \text{Monthly Interest} = \frac{972.00 \times 0.19}{12} = 15.39 \][/tex]
- Credit Card D:
[tex]\[ \text{Balance} = 389.00 \quad \text{APR} = 0.17 \][/tex]
[tex]\[ \text{Monthly Interest} = \frac{389.00 \times 0.17}{12} = 5.5108 \][/tex]
2. Calculate the minimum payment for each credit card:
The formula to calculate the minimum payment is:
[tex]\[ \text{Minimum Payment} = \frac{\text{Balance}}{\text{Number of Months}} + \text{Monthly Interest} \][/tex]
Let's calculate the minimum payment for each credit card:
- Credit Card A:
[tex]\[ \text{Minimum Payment} = \frac{563.00}{12} + 7.5067 = 46.9167 + 7.5067 = 54.4233 \][/tex]
- Credit Card B:
[tex]\[ \text{Minimum Payment} = \frac{2525.00}{12} + 44.1875 = 210.4167 + 44.1875 = 254.6042 \][/tex]
- Credit Card C:
[tex]\[ \text{Minimum Payment} = \frac{972.00}{12} + 15.39 = 81.0000 + 15.39 = 96.39 \][/tex]
- Credit Card D:
[tex]\[ \text{Minimum Payment} = \frac{389.00}{12} + 5.5108 = 32.4167 + 5.5108 = 37.9275 \][/tex]
3. Sum the minimum payments:
[tex]\[ \text{Total Minimum Payment} = 54.4233 + 254.6042 + 96.39 + 37.9275 = 443.345 \][/tex]
The total minimum payment necessary for Jimmy to pay off his credit card debts in 12 months is \[tex]$443.34. None of the provided choices match this value exactly. However, based on the closest numerical value provided, the correct answer is: \[ d. \$[/tex]411.25
\]