Select the correct answer.

Which value of [tex]x[/tex] makes this equation true?

[tex]-12x - 2(x + 9) = 5(x + 4)[/tex]

A. -2
B. 5
C. [tex]\frac{13}{19}[/tex]
D. [tex]-\frac{1}{3}[/tex]



Answer :

To solve the equation [tex]\(-12x - 2(x + 9) = 5(x + 4)\)[/tex], let's follow these detailed steps:

1. Distribute the constants on both sides of the equation:
[tex]\[ -12x - 2(x + 9) = 5(x + 4) \][/tex]
Distribute [tex]\(-2\)[/tex] on the left side:
[tex]\[ -12x - 2x - 18 = 5(x + 4) \][/tex]

2. Simplify the left side:
Combine like terms:
[tex]\[ -14x - 18 = 5x + 20 \][/tex]

3. Move all terms involving [tex]\(x\)[/tex] to one side and constant terms to the other side:
Add [tex]\(14x\)[/tex] to both sides:
[tex]\[ -18 = 19x + 20 \][/tex]
Subtract 20 from both sides:
[tex]\[ -38 = 19x \][/tex]

4. Solve for [tex]\(x\)[/tex]:
Divide both sides by 19:
[tex]\[ x = \frac{-38}{19} \][/tex]

Simplify the fraction:
[tex]\[ x = -2 \][/tex]

After solving the equation, we find that [tex]\(x = -2\)[/tex].

Thus, the correct answer is:

A. -2