Select the correct answer.

A point [tex]P[/tex] is placed exactly between two charges, [tex]Q_1[/tex] and [tex]Q_2[/tex]. If the electric field experienced by point [tex]P[/tex] due to charge [tex]Q_1[/tex] is [tex]1.5 \times 10^5[/tex] newtons/coulomb and the field due to charge [tex]Q_2[/tex] is [tex]7.2 \times 10^5[/tex] newtons/coulomb, what is the net electric field at point [tex]P[/tex]?

A. [tex]1.5 \times 10^5[/tex] newtons/coulomb
B. [tex]3.0 \times 10^5[/tex] newtons/coulomb
C. [tex]5.7 \times 10^5[/tex] newtons/coulomb
D. [tex]8.7 \times 10^5[/tex] newtons/coulomb
E. [tex]9.0 \times 10^5[/tex] newtons/coulomb



Answer :

To find the net electric field at point [tex]\(P\)[/tex] due to the two charges [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex], we will follow these steps:

1. Identify the electric field due to each charge at point [tex]\(P\)[/tex]:
- The electric field at [tex]\(P\)[/tex] due to [tex]\(Q_1\)[/tex] is given as [tex]\(E_{Q1} = 1.5 \times 10^5\)[/tex] newtons/coulomb.
- The electric field at [tex]\(P\)[/tex] due to [tex]\(Q_2\)[/tex] is given as [tex]\(E_{Q2} = 7.2 \times 10^5\)[/tex] newtons/coulomb.

2. Determine the direction of the electric fields:
- Assume that the fields due to [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex] are along the same line but in opposite directions since [tex]\(P\)[/tex] is exactly between the two charges.

3. Calculate the net electric field at point [tex]\(P\)[/tex]:
- Subtract the smaller electric field magnitude from the larger one to find the net electric field.
[tex]\[ E_{\text{net}} = E_{Q2} - E_{Q1} \][/tex]

4. Substitute the given values:
[tex]\[ E_{\text{net}} = 7.2 \times 10^5 \, \text{N/C} - 1.5 \times 10^5 \, \text{N/C} \][/tex]

5. Compute the result:
[tex]\[ E_{\text{net}} = 5.7 \times 10^5 \, \text{N/C} \][/tex]

Therefore, the net electric field at point [tex]\(P\)[/tex] is [tex]\(5.7 \times 10^5\)[/tex] newtons/coulomb.

The correct answer is:
C. [tex]\( 5.7 \times 10^5 \)[/tex] newtons/coulomb