Answer :

Let's find the greatest common divisor (GCD) of the polynomials [tex]\(3x^3 + 15x^2\)[/tex] and [tex]\(9x^2 + 59x\)[/tex].

### Step-by-Step Solution:

1. Factor each polynomial:

For the first polynomial [tex]\(3x^3 + 15x^2\)[/tex]:
[tex]\[ 3x^3 + 15x^2 = 3x^2 (x + 5) \][/tex]

For the second polynomial [tex]\(9x^2 + 59x\)[/tex]:
[tex]\[ 9x^2 + 59x = x(9x + 59) \][/tex]

2. Identify the common factors:

The factored forms of the polynomials are:
[tex]\[ 3x^2 (x + 5) \quad \text{and} \quad x (9x + 59) \][/tex]

The common factor in both factorizations is [tex]\(x\)[/tex].

Thus, the greatest common divisor (GCD) of the polynomials [tex]\(3x^3 + 15x^2\)[/tex] and [tex]\(9x^2 + 59x\)[/tex] is:
[tex]\[ \boxed{x} \][/tex]