Select the correct answer.

An electron with a charge of [tex]-1.6 \times 10^{-19}[/tex] coulombs experiences a field of [tex]1.4 \times 10^5[/tex] newtons/coulomb. What is the magnitude of the electric force on this electron due to this field?

A. [tex]1.6 \times 10^{-3}[/tex] newtons
B. [tex]1.4 \times 10^{24}[/tex] newtons
C. [tex]2.2 \times 10^{-14}[/tex] newtons
D. [tex]7.4 \times 10^{-13}[/tex] newtons
E. [tex]4.5 \times 10^{14}[/tex] newtons



Answer :

To find the magnitude of the electric force [tex]\( F \)[/tex] on an electron due to an electric field [tex]\( E \)[/tex], we use the equation:

[tex]\[ F = q \cdot E \][/tex]

where:
- [tex]\( q \)[/tex] is the charge of the electron, which is [tex]\( -1.6 \times 10^{-19} \)[/tex] coulombs
- [tex]\( E \)[/tex] is the electric field, which is [tex]\( 1.4 \times 10^{5} \)[/tex] newtons per coulomb

Since we are asked for the magnitude of the force, we'll use the absolute value of the charge:

[tex]\[ |q| = 1.6 \times 10^{-19} \][/tex] coulombs

Now, plug the values into the formula:

[tex]\[ F = (1.6 \times 10^{-19} \, \text{C}) \times (1.4 \times 10^{5} \, \text{N/C}) \][/tex]

Now, perform the multiplication of the numerical coefficients and add the exponents for the powers of ten:

[tex]\[ F = 1.6 \times 1.4 \times 10^{-19+5} \][/tex]

[tex]\[ F = 2.24 \times 10^{-14} \][/tex]

So, the magnitude of the electric force on the electron is:

[tex]\[ F = 2.24 \times 10^{-14} \][/tex] newtons

Comparing this result with the given options:

A. [tex]\( 1.6 \times 10^{-3} \)[/tex] newtons
B. [tex]\( 1.4 \times 10^{24} \)[/tex] newtons
C. [tex]\( 2.2 \times 10^{-14} \)[/tex] newtons
D. [tex]\( 7.4 \times 10^{-13} \)[/tex] newtons
E. [tex]\( 4.5 \times 10^{14} \)[/tex] newtons

The correct answer is:

C. [tex]\( 2.2 \times 10^{-14} \)[/tex] newtons