Question 4 (Multiple Choice, Worth 2 points)

Which of the following expressions does [tex]\sin (x-y) - \sin (x+y)[/tex] simplify to?

A. [tex]-2(\cos x)(\cos y)[/tex]
B. [tex]-2(\cos x)(\sin y)[/tex]
C. [tex]-2(\sin x)(\sin y)[/tex]
D. [tex]-2(\sin x)(\cos y)[/tex]



Answer :

To simplify the expression [tex]\(\sin(x-y) - \sin(x+y)\)[/tex], we use trigonometric identities. We will apply the sum-to-product identities for sine functions:

1. Sum-to-Product Identities:
[tex]\[ \sin A - \sin B = 2 \cos \left( \frac{A + B}{2} \right) \sin \left( \frac{A - B}{2} \right) \][/tex]

However, here we are dealing with [tex]\(\sin(x-y) - \sin(x+y)\)[/tex].

2. Applying the Specific Values:
Let [tex]\( A = x - y \)[/tex] and [tex]\( B = x + y \)[/tex]

According to the identity:
[tex]\[ \sin(x - y) - \sin(x + y) = 2 \cos \left( \frac{(x - y) + (x + y)}{2} \right) \sin \left( \frac{(x - y) - (x + y)}{2} \right) \][/tex]

Simplify the terms inside the cos and sin functions:
[tex]\[ \cos \left( \frac{(x - y) + (x + y)}{2} \right) = \cos \left( \frac{2x}{2} \right) = \cos(x) \][/tex]

[tex]\[ \sin \left( \frac{(x - y) - (x + y)}{2} \right) = \sin \left( \frac{-2y}{2} \right) = \sin(-y) = -\sin(y) \][/tex]

3. Combining the Results:
[tex]\[ \sin(x - y) - \sin(x + y) = 2 \cos(x) \cdot -\sin(y) \][/tex]

Therefore:
[tex]\[ \sin(x - y) - \sin(x + y) = -2 \sin(y) \cos(x) \][/tex]

Thus, the correct simplification of [tex]\(\sin(x - y) - \sin(x + y)\)[/tex] is [tex]\(-2 \sin(x) \cos(y)\)[/tex].

4. Conclusion:
The corresponding multiple-choice answer is:

[tex]\[ \boxed{-2 (\sin x)(\cos y)} \][/tex]