Question 10 (Multiple Choice, Worth 1 Point)

The radius of the snow cone is 4 inches, and the height of the cone is 6 inches. If the diameter of the bubble gum is 0.8 inches, which of the following can be used to calculate the volume of the cone that can be filled with flavored ice?

A. [tex]\(\frac{1}{3}(3.14)\left(6^2\right)(4)-\frac{4}{3}(3.14)\left(0.4^3\right)\)[/tex]

B. [tex]\(\frac{1}{3}(3.14)\left(4^2\right)(6)-\frac{4}{3}(3.14)\left(0.4^3\right)\)[/tex]

C. [tex]\(\frac{1}{3}(3.14)\left(6^2\right)(4)-\frac{4}{3}(3.14)\left(0.8^3\right)\)[/tex]

D. [tex]\(\frac{1}{3}(3.14)\left(4^2\right)(6)-\frac{4}{3}(3.14)\left(0.8^3\right)\)[/tex]



Answer :

To solve this problem, we need to calculate the volume of a cone and then subtract the volume of a bubble gum from it. Here are the detailed steps:

1. Calculate the volume of the cone:
- The formula for the volume of a cone is [tex]\( V = \frac{1}{3} \pi r^2 h \)[/tex]
- Given:
- Radius of the cone, [tex]\( r = 4 \)[/tex] inches
- Height of the cone, [tex]\( h = 6 \)[/tex] inches
- [tex]\( \pi = 3.14 \)[/tex]
- Plug the values into the formula:
[tex]\[ V_{\text{cone}} = \frac{1}{3} \times 3.14 \times 4^2 \times 6 \][/tex]

2. Calculate the volume of the bubble gum:
- The formula for the volume of a sphere is [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex]
- Given:
- Diameter of the bubble gum, [tex]\( d = 0.8 \)[/tex] inches, so the radius, [tex]\( r = \frac{0.8}{2} = 0.4 \)[/tex] inches
- [tex]\( \pi = 3.14 \)[/tex]
- Plug the values into the formula:
[tex]\[ V_{\text{bubble gum}} = \frac{4}{3} \times 3.14 \times 0.4^3 \][/tex]

3. Subtract the volume of the bubble gum from the volume of the cone:
- The volume of the part of the cone that can be filled with flavored ice is:
[tex]\[ V_{\text{ice}} = V_{\text{cone}} - V_{\text{bubble gum}} \][/tex]

Now, let's identify the corresponding correct formula from the given options. We'll match the mathematical expressions:

- Option 1: [tex]\(\frac{1}{3}(3.14)\left(6^2\right)(4)-\frac{4}{3}(3.14)\left(0.4^3\right)\)[/tex]
- Option 2: [tex]\(\frac{1}{3}(3.14)\left(4^2\right)(6)-\frac{4}{3}(3.14)\left(0.4^3\right)\)[/tex]
- Option 3: [tex]\(\frac{1}{3}(3.14)\left(6^2\right)(4)-\frac{4}{3}(3.14)\left(0.8^3\right)\)[/tex]
- Option 4: [tex]\(\frac{1}{3}(3.14)\left(4^2\right)(6)-\frac{4}{3}(3.14)\left(0.8^3\right)\)[/tex]

For the correct calculation:
- [tex]\( V_{\text{cone}} = \frac{1}{3} (3.14)(4^2)(6) \)[/tex]
- [tex]\( V_{\text{bubble gum}} = \frac{4}{3} (3.14)(0.4^3) \)[/tex]

Comparing it with the options, Option 2 matches our derived formulas:

[tex]\[ \frac{1}{3}(3.14)\left(4^2\right)(6)-\frac{4}{3}(3.14)\left(0.4^3\right) \][/tex]

Therefore, the correct option is:
[tex]\[ \boxed{\frac{1}{3}(3.14)\left(4^2\right)(6)-\frac{4}{3}(3.14)\left(0.4^3\right)} \][/tex]