The point of intersection of the lines [tex]y = -2x + 5[/tex] and [tex]y = x - 4[/tex] is:

A. [tex](-3, -1)[/tex]
B. [tex](3, -1)[/tex]
C. [tex](-3, 1)[/tex]
D. [tex](3, 1)[/tex]



Answer :

To find the point of intersection for the lines given by the equations [tex]\( y = -2x + 5 \)[/tex] and [tex]\( y = x - 4 \)[/tex], we need to solve for the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] where both equations are satisfied simultaneously.

### Step-by-Step Solution:

1. Set the equations equal to each other:

Since both equations equal [tex]\( y \)[/tex], we set the right-hand sides equal to each other:
[tex]\[ -2x + 5 = x - 4 \][/tex]

2. Solve for [tex]\( x \)[/tex]:

Combine like terms to isolate [tex]\( x \)[/tex]:
[tex]\[ -2x + 5 = x - 4 \][/tex]
Add [tex]\( 2x \)[/tex] to both sides:
[tex]\[ 5 = 3x - 4 \][/tex]
Add [tex]\( 4 \)[/tex] to both sides:
[tex]\[ 9 = 3x \][/tex]
Divide both sides by [tex]\( 3 \)[/tex]:
[tex]\[ x = 3 \][/tex]

3. Substitute [tex]\( x \)[/tex] back into one of the original equations to find [tex]\( y \)[/tex]:

Use the equation [tex]\( y = x - 4 \)[/tex]:
[tex]\[ y = 3 - 4 = -1 \][/tex]

So, the coordinates of the point where the two lines intersect are [tex]\( (3, -1) \)[/tex].

Hence, the correct answer is:
[tex]\[ \boxed{(3, -1)} \][/tex]