If [tex]$PR = 4x - 2$[/tex] and [tex]$RS = 3x - 5$[/tex], which expression represents [tex]PS[/tex]?

A. [tex]x - 7[/tex]
B. [tex]x - 3[/tex]
C. [tex]7x - 7[/tex]
D. [tex]7x + 3[/tex]



Answer :

To determine the expression for [tex]\( PS \)[/tex] given the expressions for [tex]\( PR \)[/tex] and [tex]\( RS \)[/tex], follow these steps:

1. Write Down the Given Expressions:
[tex]\[ PR = 4x - 2 \][/tex]
[tex]\[ RS = 3x - 5 \][/tex]

2. Determine [tex]\( PS \)[/tex] by Adding [tex]\( PR \)[/tex] and [tex]\( RS \)[/tex]:
Since [tex]\( PS \)[/tex] is the sum of [tex]\( PR \)[/tex] and [tex]\( RS \)[/tex], we can find [tex]\( PS \)[/tex] by adding the two expressions.

[tex]\[ PS = PR + RS \][/tex]

Substituting the given expressions:
[tex]\[ PS = (4x - 2) + (3x - 5) \][/tex]

3. Combine Like Terms:
First, combine the terms with [tex]\( x \)[/tex]:
[tex]\[ 4x + 3x = 7x \][/tex]

Next, combine the constant terms:
[tex]\[ -2 - 5 = -7 \][/tex]

So, the expression for [tex]\( PS \)[/tex] is:
[tex]\[ PS = 7x - 7 \][/tex]

4. Check the Provided Options:
Compare [tex]\( PS = 7x - 7 \)[/tex] with the provided options:
- [tex]\( x - 7 \)[/tex]
- [tex]\( x - 3 \)[/tex]
- [tex]\( 7x - 7 \)[/tex]
- [tex]\( 7x + 3 \)[/tex]

The expression [tex]\( PS = 7x - 7 \)[/tex] matches the third option.

Therefore, the correct expression for [tex]\( PS \)[/tex] is:
[tex]\[ \boxed{7x - 7} \][/tex]