A scientist estimates that, after a certain amount of time, there would be [tex]$2^5 \cdot 3^3 \cdot 10^5$[/tex] bacteria in a Petri dish. How many bacteria is this?



Answer :

To determine the number of bacteria in the Petri dish, we need to evaluate the expression [tex]\(2^5 \cdot 3^3 \cdot 10^5\)[/tex] step-by-step:

1. First, calculate [tex]\(2^5\)[/tex]:
[tex]\[ 2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32 \][/tex]

2. Next, calculate [tex]\(3^3\)[/tex]:
[tex]\[ 3^3 = 3 \times 3 \times 3 = 27 \][/tex]

3. Now, evaluate [tex]\(10^5\)[/tex]:
[tex]\[ 10^5 = 10 \times 10 \times 10 \times 10 \times 10 = 100000 \][/tex]

4. Multiply the values obtained from the previous steps:
[tex]\[ 32 \times 27 \times 100000 \][/tex]

5. First multiply [tex]\(32 \times 27\)[/tex]:
[tex]\[ 32 \times 27 = 864 \][/tex]

6. Finally, multiply the result by [tex]\(10^5\)[/tex]:
[tex]\[ 864 \times 100000 = 86400000 \][/tex]

So, the number of bacteria in the Petri dish is [tex]\(86,400,000\)[/tex] bacteria.