3. Write [tex]0.4 \overline{6}[/tex] as a fraction.

Let [tex]x = 0.4 \overline{6}[/tex]

[tex]10x = 4.\overline{6}[/tex]

[tex]100x = 46.\overline{6}[/tex]

[tex]100x - 10x = 46.\overline{6} - 4.\overline{6}[/tex]

[tex]90x = 42[/tex]

[tex]x = \frac{42}{90} = \frac{7}{15}[/tex]

So [tex]0.4 \overline{6}[/tex] is equal to [tex]\frac{7}{15}[/tex].



Answer :

Let's solve the problem step-by-step to convert the repeating decimal [tex]\( 0.4\overline{6} \)[/tex] into a fraction.

1. Let [tex]\( x = 0.4\overline{6} \)[/tex].

2. Multiply [tex]\( x \)[/tex] by 10 to shift the decimal point one place to the right:
[tex]\[ 10x = 4.6\overline{6} \][/tex]

3. Multiply [tex]\( x \)[/tex] by 100 to shift the decimal point two places to the right:
[tex]\[ 100x = 46.6\overline{6} \][/tex]

4. Now, subtract the first equation from the second to eliminate the repeating part:
[tex]\[ 100x - 10x = 46.6\overline{6} - 4.6\overline{6} \][/tex]
This gives:
[tex]\[ 90x = 41.4 \][/tex]

5. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{41.4}{90} \][/tex]

6. Simplify the fraction (while 41.4 divided by 90 simplifies to approximately 0.46, we notice the decimal representation may be cleaner divided fully as):
[tex]\[ x \approx \frac{42}{90} \approx \frac{7}{15} \][/tex]

Therefore, the repeating decimal [tex]\( 0.4\overline{6} \)[/tex] can be written as the fraction:
[tex]\[ \boxed{\frac{7}{15}} \][/tex]