Simplify the expression:

[tex]\operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \operatorname{Sin} 4A \cdot \operatorname{Cosec} A[/tex]



Answer :

To solve the given trigonometric equation:

[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \operatorname{Sin} 4A \cdot \operatorname{Cosec} A \][/tex]

we need to manipulate and simplify both sides of the equation using known trigonometric identities.

### Step 1: Rewrite the given equation using trigonometric identities:

The given equation is:

[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \operatorname{Sin} 4A \cdot \operatorname{Cosec} A \][/tex]

We know from trigonometric identities that:
[tex]\[ \operatorname{Cosec} A = \frac{1}{\operatorname{Sin} A} \][/tex]

Substituting [tex]\(\operatorname{Cosec} A\)[/tex] in the equation, we get:

[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \operatorname{Sin} 4A \cdot \left(\frac{1}{\operatorname{Sin} A}\right) \][/tex]

### Step 2: Simplify the expression on the right side:

The equation now becomes:

[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \left(\frac{\operatorname{Sin} 4A}{\operatorname{Sin} A}\right) \][/tex]

### Step 3: Apply the identity for [tex]\( \operatorname{Sin} 4A \)[/tex]:

Recall the trigonometric identity for [tex]\( \operatorname{Sin} 4A \)[/tex]:

[tex]\[ \operatorname{Sin} 4A = 2 \operatorname{Sin} 2A \cdot \operatorname{Cos} 2A \][/tex]

Substitute this identity into the equation:

[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \left(\frac{2 \operatorname{Sin} 2A \cdot \operatorname{Cos} 2A}{\operatorname{Sin} A}\right) \][/tex]

### Step 4: Simplify the expression further:

[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \cdot \frac{2 \operatorname{Sin} 2A \cdot \operatorname{Cos} 2A}{\operatorname{Sin} A} \][/tex]

This simplifies to:

[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \cdot \frac{2 \operatorname{Sin} 2A \cdot \operatorname{Cos} 2A}{\operatorname{Sin} A} \][/tex]

Thus, we have the following key steps in solving the equation:

1. Original Equation:
[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \operatorname{Sin} 4A \cdot \operatorname{Cosec} A \][/tex]

2. Using Trigonometric Identities:
[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \operatorname{Sin} 4A \cdot \frac{1}{\operatorname{Sin} A} \][/tex]

3. Simplifying the Right Side:
[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \left(\frac{\operatorname{Sin} 4A}{\operatorname{Sin} A}\right) \][/tex]

4. Applying the Identity for [tex]\( \operatorname{Sin} 4A \)[/tex]:
[tex]\[ \operatorname{Cos} A \cdot \operatorname{Cos} 2A = \frac{1}{4} \cdot 2 \cdot \frac{\operatorname{Sin} 2A \cdot \operatorname{Cos} 2A}{\operatorname{Sin} A} \][/tex]

This brings us to the simplified form of the equation, having manipulated it solely using trigonometric identities and simplification methods.