Select the correct answer.

What is the solution set of this inequality?

[tex]\[
8(x - 5) - 3x \geq -20
\][/tex]

A. [tex]\( x \leq -12 \)[/tex]

B. [tex]\( x \geq 4 \)[/tex]

C. [tex]\( x \leq 12 \)[/tex]

D. [tex]\( x \geq -3 \)[/tex]



Answer :

To solve the inequality [tex]\(8(x - 5) - 3x \geq -20\)[/tex], let's go through the steps in a detailed manner:

1. Distribute the 8 across the terms inside the parenthesis:

[tex]\[ 8(x - 5) - 3x \geq -20 \][/tex]

[tex]\[ 8x - 40 - 3x \geq -20 \][/tex]

2. Combine like terms on the left-hand side:

[tex]\[ (8x - 3x) - 40 \geq -20 \][/tex]

[tex]\[ 5x - 40 \geq -20 \][/tex]

3. Isolate the term with the variable [tex]\(x\)[/tex] by adding 40 to both sides of the inequality:

[tex]\[ 5x - 40 + 40 \geq -20 + 40 \][/tex]

[tex]\[ 5x \geq 20 \][/tex]

4. Divide both sides by 5 to solve for [tex]\(x\)[/tex]:

[tex]\[ \frac{5x}{5} \geq \frac{20}{5} \][/tex]

[tex]\[ x \geq 4 \][/tex]

Thus, the solution set for the inequality [tex]\(8(x - 5) - 3x \geq -20\)[/tex] is [tex]\(x \geq 4\)[/tex].

Among the given options:
- A. [tex]\(x \leq -12\)[/tex]
- B. [tex]\(x \geq 4\)[/tex]
- C. [tex]\(x \leq 12\)[/tex]
- D. [tex]\(x \geq -3\)[/tex]

The correct answer is:

B. [tex]\(x \geq 4\)[/tex]