Balance the following equations using the smallest possible whole number stoichiometric coefficients.

Part 1 of 3

[tex]\[ 2 \, \text{Mg} + \text{O}_2 \rightarrow 2 \, \text{MgO} \][/tex]

Part 2 of 3



Answer :

To balance the chemical equation [tex]\(2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO}\)[/tex], let's follow these steps:

### Step-by-Step Solution:

1. Identify the number of atoms of each element on both sides of the equation:
- On the reactant side (left side), we have:
- 2 atoms of Magnesium ([tex]\(\text{Mg}\)[/tex])
- 2 atoms of Oxygen ([tex]\(\text{O}_2\)[/tex])

- On the product side (right side), we have:
- 2 atoms of Magnesium ([tex]\(\text{MgO}\)[/tex])
- 2 atoms of Oxygen ([tex]\(\text{MgO}\)[/tex])

2. Check if the equation is balanced:
- For Magnesium ([tex]\(\text{Mg}\)[/tex]):
- Reactant side: 2 atoms
- Product side: 2 atoms
- For Oxygen ([tex]\(\text{O}\)[/tex]):
- Reactant side: 2 atoms (in [tex]\(\text{O}_2\)[/tex])
- Product side: 2 atoms (in 2 molecules of [tex]\(\text{MgO}\)[/tex])

3. Conclusion:
- The equation is already balanced with the smallest possible whole numbers.

Therefore, the balanced equation is:
[tex]\[ 2 \text{Mg} + \text{O}_2 \rightarrow 2 \text{MgO} \][/tex]

### Confirmed Amounts:

- Number of Magnesium ([tex]\(\text{Mg}\)[/tex]) atoms in the reactant: 2
- Number of Oxygen ([tex]\(\text{O}_2\)[/tex]) molecules: 1
- Number of Magnesium Oxide ([tex]\(\text{MgO}\)[/tex]) molecules in the product: 2

So the confirmed values are:
- [tex]\( \text{Reactant:} \)[/tex]
- [tex]\( \text{Mg} = 2 \)[/tex]
- [tex]\( \text{O}_2 = 1 \)[/tex]
- [tex]\( \text{Product:} \)[/tex]
- [tex]\( \text{MgO} = 2 \)[/tex]

These values ensure that the smallest possible whole numbers are used to balance the equation.