Enter the correct answer in the box.

The function [tex]f(x) = 7^x + 1[/tex] is transformed to function [tex]g[/tex] through a horizontal compression by a factor of [tex]\frac{1}{3}[/tex]. What is the equation of function [tex]g[/tex]?

Substitute a numerical value for [tex]k[/tex] into the function equation.



Answer :

To determine the transformed function [tex]\( g(x) \)[/tex], we need to apply a horizontal compression by a factor of [tex]\( \frac{1}{3} \)[/tex] to the original function [tex]\( f(x) = 7^x + 1 \)[/tex].

Horizontal compression by a factor of [tex]\( \frac{1}{3} \)[/tex] involves multiplying the input variable [tex]\( x \)[/tex] by 3. Therefore, if the original function is [tex]\( f(x) = 7^x + 1 \)[/tex], then the horizontally compressed function [tex]\( g(x) \)[/tex] can be represented as:

[tex]\[ g(x) = f(3x) \][/tex]

Substituting [tex]\( 3x \)[/tex] into the original function:

[tex]\[ g(x) = 7^{3x} + 1 \][/tex]

Thus, the transformed function [tex]\( g(x) \)[/tex] is given by:

[tex]\[ g(x) = 7^{3x} + 1 \][/tex]

This is the equation of the function [tex]\( g \)[/tex] after the horizontal compression.